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Preface to the Third Edition

The publication of this third edition has provided the opportunity to carefully
scrutinize the entire contents and update them wherever necessary. Overview and
aims, organization and features, and target audiences remain unchanged. The main
additions are in Part III (Applications), which has acquired new sections or chapters
on the seemingly ever-expanding “omics”—now metagenomics, toxicogenomics,
glycomics, lipidomics, microbiomics, and phenomics are all covered, albeit mostly
briefly. The increasing involvement of information theory with ecosystems man-
agement, which is undoubtedly a part of biology, was felt to warrant a new chapter
on that topic. The nervous system has also been explicitly included: it is indubitably
an information processor and at the same time biological and, therefore, certainly
warrants inclusion, although consideration of the vastness of the topic and its
extensive coverage elsewhere has kept the corresponding chapter brief. A section
on the automation of biological research now concludes the work.

In his contribution, entitled “The domain of information theory in biology,” to
the 1956 Symposium on Information Theory in Biology,1 Henry Quastler remarks
(p. 188) that “every kind of structure and every kind of process has its informational
aspect and can be associated with information functions. In this sense, the domain
of information theory is universal—that is, information analysis can be applied to
absolutely anything.” This sentiment continues to pervade the present work.

The author takes this opportunity to thank all those who kindly commented on
the second edition.

January 2015

1Yockey.
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Preface to the Second Edition

Overview and Aims

This book is intended as a self-contained guide to the entire field of bioinformatics,
interpreted as the application of information science to biology. There is a strong
underlying belief that information is a profound concept underlying biology, and
familiarity with the concepts of information should make it possible to gain many
important new insights into biology. In other words, the vision underpinning this
book goes beyond the narrow interpretation of bioinformatics sometimes encoun-
tered, which may confine itself to specific tasks such as the attempted identification
of genes in a DNA sequence.

Organization and Features

The chapters are grouped into three parts, respectively covering the relevant fun-
damentals of information science, overviewing all of biology, and surveying
applications. Thus Part I (Fundamentals) carefully explains what information is, and
discusses attributes such as value and quality, and its multiple meanings of accu-
racy, meaning, and effect. The transmission of information through channels is
described. Brief summaries of the necessary elements of set theory, combinatorics,
probability, likelihood, clustering, and pattern recognition are given. Concepts such
as randomness, complexity, systems, and networks, needed for the understanding of
biological organization, are also discussed. Part II (Biology) covers both organismal
(ontogeny and phylogeny, as well as genome structure) and molecular aspects.
Part III (Applications) is devoted to the most important practical applications of
bioinformatics, notably gene identification, transcriptomics, proteomics, interacto-
mics (dealing with networks of interactions), and metabolomics. These chapters
start with a discussion of the experimental aspects (such as DNA sequencing in the
genomics chapter), and then move on to a thorough discussion of how the data are
analysed. Specifically, medical applications are grouped in a separate chapter.

ix



A number of problems are suggested, many of which are open-ended and intended
to stimulate further thinking. The bibliography points to specialized monographs
and review articles expanding on material in the text, and includes guide references
to very recently reported research not yet to be found in reviews.

Target Audiences

This book is primarily intended as a textbook for undergraduates, for whom it aims
to be a complete study companion. As such, it will also be useful to the beginning
graduate student.

A secondary audience is physical scientists seeking a comprehensive but suc-
cinct guide to biology, and biological scientists wishing to better acquaint them-
selves with some of the physicochemical and mathematical aspects that underpin
the applications.

It is hoped that all readers will find that even familiar material is presented with
fresh insight, and will be inspired to new thoughts.

The author takes this opportunity to thank all those who gave him their com-
ments on the first edition.

May 2008

x Preface to the Second Edition



Preface to the First Edition

This little book attempts to give a self-contained account of bioinformatics, so that
the newcomer to the field may, whatever his point of departure, gain a rather
complete overview. At the same time it makes no claim to be comprehensive: The
field is already too vast—and let it be remembered that although its recognition as a
distinct discipline (i.e., one after which departments and university chairs are
named) is recent, its roots go back a long time.

Given that many of the newcomers arrive from either biology or informatics, it
was an obvious consideration that for the book to achieve its aim of completeness,
large portions would have to deal with matter already known to those with back-
grounds in either of those two fields; that is, in the particular chapters dealing with
them, the book would provide no information for them. Since such chapters could
hardly be omitted, I have tried to consider such matter in the light of bioinformatics
as a whole, so that even the student ostensibly familiar with it could benefit from a
fresh viewpoint.

In one regard especially, this book cannot be comprehensive. The field is
developing extraordinarily rapidly and it would have been artificial and arbitrary to
take a snapshot of the details of contemporary research. Hence I have tried to focus
on a thorough grounding of concepts, which will enable the student not only to
understand contemporary work but should also serve as a springboard for his or her
own discoveries. Much of the raw material of bioinformatics is open and accessible
to all via the Internet, powerful computing facilities are ubiquitous, and we may be
confident that vast tracts of the field lie yet uncultivated. This accessibility extends
to the literature: Research papers on any topic can usually be found rapidly by an
Internet search and, therefore, I have not aimed at providing a comprehensive
bibliography.

In bioinformatics, so much is to be done, the raw material to hand is already so
vast and vastly increasing, and the problems to be solved are so important (perhaps
the most important of any science at present), we may be entering an era compa-
rable to the great flowering of quantum mechanics in the first three decades of the
twentieth century, during which there were periods when practically every doctoral
thesis was a major breakthrough. If this book is able to inspire the student to take up
some of the challenges, then it will have accomplished a large part of what it sets
out to do.

xi



Indeed, I would go further to remark that I believe that there are still compar-
atively simple things to be discovered and that many of the present directions of
work in the field may turn out not to be right. Hence, at this stage in its development
the most important thing is to facilitate that viewpoint that will facilitate new
discoveries. This belief also underlies the somewhat more detailed coverage of the
biological processes in which information processing in nature is embodied than
might be considered customary.

A work of this nature depends on a long history of interactions, discussions, and
correspondence with many present and erstwhile friends and colleagues, some of
whom, sadly, are no longer alive. I have tried to reflect some of this debt in the
citations. Furthermore, many scientific subjects and methods other than those
mentioned in the text had to be explored before the ones best suited to the purpose
of this work could be selected, and my thanks are due to all those who helped in
these preliminary studies. I should like to add a special word of thanks to Victoria
Kechekhmadze for having so ably drawn the figures.

January 2004
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1Introduction

Information is central to life. The principle enunciated by Crick, that information
flows from the gene (DNA) to the protein, occupies such a key place in modern
molecular biology that it is frequently referred to as the “central dogma”: DNA acts
as a template to replicate itself, DNA is transcribed into RNA, and RNA is translated
into protein.

The mission of biology is to answer the question “What is life?” For many cen-
turies, the study of the living world proceeded by examination of its external charac-
teristics (i.e., of phenotype, including behaviour). This led to Linnaeus’ hierarchical
classification.Akey advancewasmade about 150years agowhenMendel established
the notion of an unseen heritable principle. Improvements in experimental techniques
lead to a steady acceleration in the gathering of facts about the components of living
matter, culminating in Watson and Crick’s discovery of the DNA double helix half
a century ago, which ushered in the modern era of molecular biology.

The mission of biology remained unchanged during these developments, but
knowledge about life became steadily more detailed. As Sommerhoff has remarked,
“To put it naïvely, the fundamental problem of theoretical biology is to discover
how the behaviour of myriads of blind, stupid, and by inclination chaotic, atoms can
obey the laws of physics and chemistry, and at the same time become integrated into
organic wholes and into activities of such purpose-like character”. Since he wrote
those words, experimental molecular biology has advanced far and fast, yet the most
important question of all, “what is life?” remains a riddle.

It is a curious fact that although “information” figures so prominently in the
central dogma, the concept of information has continued to receive rather cursory
treatment in molecular biology textbooks. Even today, the word “information” may
not even appear in the index. On the other hand, whole chapters are devoted to energy
and energetics, which, like information, is another fundamental, irreducible concept.
Although the doctoral thesis of Shannon, one of the fathers of information theory,was
entitled “An algebra for theoretical genetics”, apart from genetics, biology remained
largely untouched by developments in information science.

© Springer-Verlag London 2015
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2 1 Introduction

Onemight speculate on why information was placed so firmly at the core of mole-
cular biology by one of its pioneers. During the preceding decade, there had been
tremendous advances in the theory of communication—the science of the transmis-
sion of information. Shannon published his seminal paper on themathematical theory
of communication only a few years before Watson and Crick’s work. In that context,
the notion of a sequence of DNA bases as message with meaning seemed only nat-
ural, and the next major development—the establishment of the genetic code with
which the DNA sequence could be transformed into a protein sequence—was cast
very much in the language and concepts of communication theory. More puzzling is
that there was not subsequently a more vigorous interchange between the two dis-
ciplines. Probably the lack of extensive datasets and of powerful computers, which
made the necessary calculations intolerably tedious, or simply too long, provides
sufficient explanation for this neglect—and hence, now that both these requirements
(datasets and powerful computers) are being met, it is not surprising that there is
a great revival in the application of information ideas to biology. One may indeed
hope that this revival will at last lead to a real answer being advanced in response to
the vital question “what is life?”: In other words, information science is perhaps the
missing discipline that, along with the physics and chemistry already being brought
to bear, is needed to answer the question.

1.1 What is Bioinformatics?

The term “bioinformatics” seems to have been first used in the mid-1980s in order to
describe the application of information science and technology in the life sciences.
The definition was at that time very general, covering everything from robotics to
artificial intelligence. Later, bioinformatics came to be somewhat prosaically defined
as “the use of computers to retrieve, process, analyse, and simulate biological infor-
mation”. An even narrower definitionwas “the application of information technology
to the management of biological data”. Such definitions fail to capture the centrality
of information in biology. If, indeed, information is the most fundamental concept
underlying biology and bioinformatics is the exploration of all the ramifications and
implications of that basis, then bioinformatics is excellently positioned to revive
consideration of the central question “what is life?” A more appropriate definition
of bioinformatics is, therefore, “the science of how information is generated, trans-
mitted, received, stored, processed and interpreted in biological systems” or, more
succinctly, “the application of information science to biology”.

The emergence of information theory by the middle of the twentieth century
enabled the creation of a formal framework within which information could be quan-
tified. To be sure, the theory was, and to some extent still is, incomplete, especially
regarding those aspects going beyond the merely faithful transmission of messages,
in order to enquire about, and even quantify, the meaning and significance of mes-
sages.
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In parallel to these developments, other advances, including the development
of the idea of algorithmic complexity, with which the names of Kolmogorov and
Chaitin are associated, allowed a number of other crucial clarifications to be made,
including the notion that randomness is minimally informative. The DNA sequence
of a living organism must depart in some way from randomness, and the study of
these departures could be said to constitute the core of bioinformatics.

Alongside information theory, cybernetics developed as a distinctive science at
around the same time and largely within the same constellation. Its definition is well
conveyed by the subtitle of Wiener’s eponymous book (1948): “the study of control
and communication in the animal and the machine”. The word itself was coined
by Ampère (as cybernétique) more than a century earlier. It is derived from the
Greek κυβερνητζσ, meaning steersman, from which we get our Latin gubernetes,
morphing into “governor”. A governor such as Watts’ for the steam engine uses a
relatively simple feedbackmechanism in its operation, and feedback has remained an
important concept within cybernetics. It appears to have already been used by Plato
as a metaphor for governance in society (which was the interest of Ampère in the
topic).According toAristotle,κυβερνητικη τηχνε, the art of the steersman, implied
teleological (goal-oriented) activity as well as knowledge, which is, as Sommerhoff
has pointed out, perhaps the most characteristic apparent feature of living organisms.
Information is, of course, central to considering how control and communication are
enacted and, hence, bioinformatics and cybernetics become almost synonymous.

1.2 What Can Bioinformatics Do?

In a very short interval, “bioinformatics” has become an extremely active research
field. Although it began with sequence comparison (which is a subbranch of the
study of the nonrandomness of DNA sequences), it now encompasses a far wider
spread of activity, which truly epitomizes modern scientific research. It is highly
interdisciplinary, requiring at least mathematical, biological, physical, and chemical
knowledge, and its implementation may furthermore require knowledge of computer
science, chemical engineering, biotechnology, medicine, pharmacology, etc. There
is, moreover, little distinction between work carried out in the public domain, either
in academic institutions (universities) or state research laboratories, or privately by
commercial firms.

The handling and analysis of DNA sequences remains one of the prime tasks of
bioinformatics. This topic is usually divided into two parts: (1) functional genomics,
which seeks to determine the rôle of the sequence in the living cell, either as a
transcribed and translated unit (i.e., a protein, the description of the function of
which might involve knowledge of its structure and potential interactions) or as
a regulatory motif, whether as a promoter site or as a short sequence transcribed
as a piece of small interfering RNA; and (2) comparative genomics, in which the
sequences from different organisms, or even different individuals, are compared in
order to determine ancestries and correlations with disease. Clearly, the comparison
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of unknown sequences with known ones can also help to elucidate function; both
parts are concerned with the search for patterns or regularities—which is indeed the
core of all scientific work. One can feel that it is fortunate (for scientists) that life
is in some sense encapsulated in such a highly formalized object as a sequence of
symbols (a string).

The requirement of entire genomes to feed this search has led to tremendous
advances in the technology of rapid sequencing, which, in turn, has put new demands
on informatics for interpreting the raw output of a sequencer. If a DNA sequence
is the message, then functional genomics is concerned with the meaning of the
message and, in turn, this has led to the experimental analysis of the RNA transcripts
(the transcriptome) and the repertoire of expressed proteins (the proteome), each of
which presents fresh informatics challenges. They have themselves spawned interest
in the products of protein activity—saccharides (glycomics), lipids (lipidomics), and
metabolites (metabolomics).All these “-omics”, including the integrative phenomics,
are considered to be part of bioinformatics and are covered in this book. Mindful
of the need to keep the length of this book within reasonable bounds, chemical
genomics (or chemogenomics), defined as the use of small molecules to study the
functions of the cell at the genome level (including investigation of the effects of
such molecules on gene expression), although closely related to the other topics,
is not covered. Computational biology (defined as the application of quantitative
and analytical techniques to model biological systems), is only covered via a brief
consideration of the virtual living organism. Also in order to keep the length of this
book within reasonable bounds, the impressive attempts of Holland, Ray and others
to model some characteristic features of life—speciation and evolution—entirely in
silico using digital organisms (i.e., computer programs able to self-replicate, mutate,
etc.) are not covered.

Many bioinformaticians wonder what is the relation of their field to systems biol-
ogy, which “aims to understand biological behaviour at the systems level through
an abstract description in terms of mathematical and computational formalisms”.1

As far as can be discerned (“definitions” abound), it is really a subset of bioinfor-
matics dealing especially with modelling and perhaps constituting the intersection
of bioinformatics with computational biology. If emphasis is placed on the abstract
description aspect, systems biology would appear to be the same as what was previ-
ously called analytical biology.

Aside from sequencing, another product of high-throughput biology is the exper-
imental determination of interactions between objects (i.e., between genes, proteins
and metabolites)—now called interactomics—and the inference of regulatory net-
works from such data has also become a significant part of bioinformatics.

It seems perfectly reasonable to include neurophysiology within bioinformatics,
since it deals with how information is generated, transmitted, received, and inter-
preted in the brain; that is, it corresponds precisely with our definition given above,
although it is often considered to be a vast field in its own right. This is even more

1Kolch et al. (2005).
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true of the science of human communication and cognition, which has, regrettably
to be left aside in this book.

The book is organized into three main parts. Part I deals, largely heuristically,
with the concept of information and some essential basic knowledge associated with
it—what one needs to know in order to make sense of the application of information
theory to biology—including elements of combinatorics and probability theory, and
of pattern recognition and clustering. It would have been quite appropriate to have
included a chapter on statistical models since they are needed in much work dealing
with large quantities of biological data, and only the unreasonable expansion of the
book that such inclusion would have implied, and the availability of good books
on the topic, prevented it. Part II is a compact primer on biology, both molecular
and organismal. It includes formal aspects of mechanism, whether living or not,
such as regulation and adaptation. Part III deals with applications; that is, areas
of active current work, including genomics and toxicogenomics, proteomics and
interactomics (the study of the repertoire of molecular interactions in a cell). Topics
such as practical programming, or database handling, are left out since there are
already several excellent books available covering them.2 A similar remark applies
to such topics as the design of genetic association studies.

Although the gene has been at the heart of bioinformatics from the beginning,
the main challenge seems now to lie in understanding the functional relationships
between biological objects beyond those encoded in the nucleotide sequence. This
zone is called epigenetics, and we are only just entering it. It still appears mostly
formless, with tantalizing, but evermore frequent, glimpses of incredible complexity,
and if there are clues to its structure in the nucleotide sequence, they remain as yet
largely hidden from us.

Attention should be called to the fact that for various reasons, including exper-
imental ones, the usual procedure in the physical sciences, which is first to assign
numbers to the phenomenon under investigation and then to manipulate the numbers
according to the usual rules of mathematics, both operations being publicly declared
and publicly accessible, is often confounded in the biological sciences, not least
because of the great complexity of the phenomena under investigation. Bioinformat-
ics may be able to provide the needed quantification for the vast tracts of biology
where it is so sorely needed.

One consequence of the apparent reluctance of experimenters in the biological
sciences to assign numbers to the phenomena they investigate is that the experimental
literature is very wordy and hence voluminous, so much so that a subbranch of
bioinformatics called textmining has grown up,whose aim is to automatically extract
information from published articles, from which, for example, the association of a
pair of genes can be inferred. The techniques involved are essentially the same as
those involved in searching for genes in a DNA sequence. They are briefly discussed
in the final chapter.

2The development of new algorithms and statistics is, of course, in itself an important branch of
bioinformatics.
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Activity in a new field begins with the advanced researcher, later it becomes mate-
rial suitable for doctoral theses, and finally becomes part of undergraduate studies.
Bioinformatics seems to be on the threshold of the shift into undergraduate work. The
enormous virgin fields opened up by the sequencing of the entire DNA of organisms
has imparted tremendous impetus and urgency, and practitioners are now required at
every level, from the implementation of the latest findings in medicine and ecology
to the continued pushing back of the frontiers of knowledge.

References
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Information



2TheNature of Information

What is information? We have already asserted that it is a profound, primitive (i.e.,
irreducible) concept. Dictionary definitions include “(desired) items of knowledge”;
for example, one wishes to know the length of a piece of wood. It appears to be
less than a foot long, so we measure it with our desktop ruler marked off in inches,
with the result, let us say, “between six and seven inches”. This result is clearly
an item of desired knowledge, hence information. We shall return to this example
later. Another definition is “fact(s) learned about something”, implying that there is
a definable object to which the facts are related, suggesting the need for context and
meaning. A further definition is “what is conveyed or represented by a particular
arrangement of things”; the dots on the head of a matrix printer shape a letter, the bar
code on an item of merchandise represents facts about the nature, origin, and price
of the merchandise, and a sequence of letters can convey a possibly infinite range
of meanings. A thesaurus gives as synonyms “advice, data, instruction, message,
news, report”. Finally, we have “a mathematical quantity expressing the probability
of occurrence of a specific sequence of symbols or impulses as against that of other
sequences (i.e., messages)”. This definition links the quantification of information
to a probability, which, as we shall see, plays a major rôle in the development of the
subject.

We also note that “information science” is defined as the “study of processes
for storing and retrieving information”, and “information theory” is defined as the
“quantitative studyof transmissionprocesses for storing and retrievingof information
by signals”; that is, it deals with themathematical problems arising in connexionwith
the storage, transformation, and transmission of information. This forms the material
for Chap.3. Etymologically, the word “information” comes from the Latin forma,
form, from formare, to give shape to, to describe.

Most information can be reduced to the response, or series of responses, to a
question, or series of questions, admitting only yes or no as an answer. We call
these yes/no, or dichotomous, questions. Typically, interpretation depends heavily on

© Springer-Verlag London 2015
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10 2 The Nature of Information

context.1 Consider a would-be passenger racing up to a railway station. His ques-
tion “has the train gone?” may indeed be answered by “yes” or “no”—although, in
practice, a third alternative, “don’t know,” may be encountered. At a small wayside
station, with the traveller arriving within five minutes of the expected departure time
of the only train scheduled within the next hour, the answer (yes or no) would be
unambiguous and will convey exactly one bit of information, as will be explained
below. If we insist on the qualification “desired,” an unsolicited remark of the sta-
tionmaster, “the train has gone,” may or may not convey information to the hopeful
passenger. Should the traveller have seen with his own eyes the train depart a minute
before, the stationmaster’s remark would certainly not convey any information.

Consider now a junction at which, after leaving the station, the lines diverge in
three different directions. The remark “the train has gone”, assuming the information
was desired, would still convey one bit of information, but by in addition specifying
the direction, viz. “the train has gone to X,” or “the train to X has gone,” “X” being
one of the three possible destinations, the remark would convey log2 3 = 1.59 bits
of information, this being the average number of questions admitting yes/no answers
required to specify the fact of departure to X, as opposed to either of the two other
directions.

This little scenario illustrates several crucial points:

1. Variety exists. In a formless, amorphous world there is no information to convey.
2. The amount of information received depends onwhat the recipient knows already.
3. The amount of information can only be calculated if the set of possible messages

(responses) has been predefined.

Dichotomous information often has a hierarchical structure; for example, on a
journey, a selection of direction has to be made at every cross-road. Given an ulti-
mate destination, successive choices are only meaningful on the basis of preceding
ones. Consider also an infant, who “chooses” (according to its environment) which
language it will speak. As an adolescent, he chooses a profession, again with an
influence from the environment and, in making this choice, knowledge of a certain
language may be primordial. As an adult there will be further career choices, which
will usually be intimately related to the previous choice of a profession.

Let us now reexamine themeasurement of the length of a stick. It must be specified
in advance that it does not exceed a certain value—say one foot. This will suffice to
allow an appropriate measuring tool to be selected. If all we had was a measuring
stick exactly one foot long, we could simply ascertain whether the unknown piece
was longer or shorter, and this information would provide one bit of information, if
any length was a priori possible for the unknown piece.

Suppose, however, that the measuring stick is marked off in 1-inch divisions. If
the probabilities p of the unknown piece being any particular length l (measured to

1When it comes to the quantification of information, context is usually formalized through the
provision of a finite set of possible answers (choices). See Sect. 2.3.2.
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the nearest inch), with 0 < l ≤ 12, were a priori equal (i.e., p = 1
12 for each possible

length), then the information produced by the measurement equals log2 12 = 3.59
bits, this being the average number of questions admitting yes/no answers required
to specify the length to the nearest inch, as the reader may verify. On the other hand,
were we to have some prior information, according to which we had good reason
to suppose the length to be close to 9 inches (perhaps we had previously requested
the wood to be chopped to that length), the probabilities of the lengths 8, 9, and 10
inches would perhaps be 0.25 each, and the sum of all the others would be 0.25. The
existence of this prior knowledgewould somewhat reduce the quantity of information
gained from the measurement, namely to 3

4 log2 4 + 1
4 log2 36 = 2.79 bits. Should

the ruler have been marked off in tenths of an inch, the measurement would have
yielded considerably more information, namely log2 120 = 6.91 bits, assuming all
the probabilities of the wood being any particular length to be equal (i.e., 1

120 each).

Variety One of the most striking characteristics of the natural, especially the living,
world around us is its variety. This variety stands in great contrast to the world
studied by the methods of physics and chemistry, in which every electron and every
proton (etc.) in the universe are presumed to be identical, and we have no evidence to
gainsay this presumption. Similarly, every atom of helium (4He) is similar to every
other one, and indeed it is often emphasized that chemistry could only make progress
as a quantitative science after the realization that pure substances were necessary for
the investigation of reactions and the like, such that a sample of naphthalene in a
laboratory in Germany would behave in precisely the same way as one in Japan.

If we are shown a tray containing balls of three colours, red (r), blue (b), and white
(w), we might reasonably assert that the variety is three. Hence, one way to quantify
variety is simply to count the number of different kinds of objects. Thus, the variety
of either of the sets {r, b,w} and {r, b, b, r,w, r,w,w, b} is equal to three; the set
{r, r,w,w,w} has a variety of only two, and so forth. The objects considered should
of course be in the same category; that is, if the categorywere specified as “ball,” then
we would have difficulty if the tray also included a banana and an ashtray. However,
one could then redefine the category.

If there were only one kind of ball, say red, then our counting procedure would
yield a variety of one. It is more natural, however, to say that there is no variety if all
the objects are the same, suggesting that the logarithm of the number of objects is a
more reasonable way to quantify variety. If all the objects are the same, the variety
is then zero. We are, of course, at liberty to choose any base for the logarithm; if the
base is 2, then conventionally the variety is given in units of bits, a contraction of
binary digit. Hence, two kinds of objects have a variety of log2 2 = 1 bit, and three
kinds give log2 3 = log10 3

log10 2
= 0.477

0.301 = 1.58 bits. The variety in bits is the average
number of yes/no questions required to ascertain the number of different kinds of
objects or to identify the kind of any object chosen from the set.2

2This primitive notion of variety is related to the diversity measured by biometricians concerned
with assessing the variety of species in an ecosystem (biocoenosis). Diversity D is essentially variety
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The Shannon Index The formula that we used to determine the quantity I of
information delivered by a measurement that fixes the result as one out of n equally
likely possibilities, each having a probability pi , i = 1, . . . , n, all equal to 1/n, was

I = − log p = log n . (2.4)

It is called Hartley’s formula. If the base of the logarithm is 2, then the formula yields
numerical values in bits. Where the probabilities of the different alternatives are not
equal, then a weighted mean must be taken:

I = −
n∑

i=1

pi log2 pi . (2.5)

This generalization is called the Shannon or Shannon–Wiener index. In other words,
the quantity of information is weighted logarithmic variety. Note that the quantity
of information given by Eq. (2.5) is always less than that given by the equiprobable
case (2.4). This follows from Jensen’s inequality.3

Why is the negative of the sum taken? I in fact represents the gain of information
due to the measurement. In general,

gain (in something) = final value − initial value . (2.7)

The initial value represents the uncertainty in the outcome prior to the measurement.
Shannon (1951) takes the final value (i.e., the result of the measurement), to be a
single value with variety one, hence using (2.5), I = 0 after the measurement; that
is, he considers the result to be known with certainty once it has been delivered.

(Footnote 2 continued)
weighted according to the relative abundances (i.e., probability pi of occurrence) of the N different
types, and this can be done in different ways. Parameters in use by practitioners include

D0 = N (no weighting), (2.1)

D1 = exp(I ) (the exponential of Shannon’s index), (2.2)

D2 = 1/
N∑

i=1

p2i (the reciprocal of Simpson’s index). (2.3)

3If g(x) is a convex function on an interval (a, b), if x1, x2, . . . , xn are arbitrary real numbers
a < xk < b, and if w1, w2, . . . , wn are positive numbers with

∑n
k=1 wk = 1, then

g
( n∑

k=1

wk xk

)
≤

n∑

k=1

wkg(xk) . (2.6)

Inequality (2.6) is then applied to the convex function y = x log x (x > 0) with xk = pk and
wk = 1/n (k = 1, 2, . . . , n) to get I (p1, p2, . . . , pn) ≤ log n.
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Hence, it is considered to have zero information, and it is in this sense that an
information processor is also an information annihilator. Wiener (1948) considers
the more general case in which the result of the measurement could be less than
certain (e.g., still a distribution, but narrower than the one measured).

The gain of information I is equivalent to the removal of uncertainty; hence,
information could be defined as “that which removes uncertainty”. It corresponds to
the reduction of variety perceived by an observer and is inversely proportional to the
probability of a particular value being read, or a particular symbol (or set of symbols)
being selected, or, more generally, is inversely proportional to the probability of a
message being received and remembered.

Example. An N × N grid of pixels, each of which can be either black or white,

can convey at most − ∑N2

i
1
2 log2

1
2 bits of information. This maximum is achieved

when the probability of being either black or white is equal.

I defined by Eqs. (2.4) and (2.5) has the properties that one may reasonably
postulate should be possessed by a measure of information, namely

1. I (ENM) = I (EN ) + I (EM ), for N , M = 1, 2, . . .;
2. I (EN ) ≤ I (EN+1);
3. I (E2) = 1.

Example. How much information is contained in a sequence of DNA? If each of
the four bases are chosen with equal probability (i.e., p = 1

4 ), the information in
a decamer is 10 log2 4 = 20 bits. It is the average number of yes/no questions
that would be needed to ascertain the sequence. If the sequence were completely
unknown before questioning, this is the gain in information. Any constraints imposed
on the assembly of the sequence—for example, a rule that “AA” is never followed
by “T”, will lower the information content of the sequence (i.e., the gain in informa-
tion upon receiving the sequence, assuming that those constraints are known to us).
Some proteins are heavily constrained; the antifreeze glycoprotein (alanine-alanine-
threonine)n could be simply specified by the instruction “repeat AAT n times”, much
more compactly than writing out the amino acid sequence in full, and the quantity of
information gained upon being informed of the sequence is correspondingly small.

Thermodynamic Entropy One often encounters the word “entropy” used synony-
mouslywith information (or its removal). Entropy (S) in a physical system represents
the ability of a system to absorb energy without increasing its temperature. Under
isothermal conditions (i.e., at a constant temperature T ),

dQ = T dS , (2.8)

where dQ is the heat that flows into the system. In thermodynamics, the internal
energy E of a system is formally defined by the First Law as the difference between
the heat and dW , the work done by the system:

dE = dQ − dW . (2.9)
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The only way that a system can absorb heat without raising its temperature is by
becoming more disordered. Hence, entropy is a measure of disorder. Starting from a
microscopic viewpoint, entropy is given by the famous formula inscribed on Boltz-
mann’s tombstone:

S = kB ln W , (2.10)

where kB is his constant and W is the number of (micro)states available to the
system. Note that reducing the number of states reduces the disorder. Information
amounting to log2 W bits is required to specify one particular microstate, assum-
ing that all microstates have the same probability of being occupied, according to
Hartley’s formula; the specification of a particular microstate removes that amount
of uncertainty. Thermodynamical entropy defined by Eq. (2.8), statistical mechani-
cal entropy (2.10), and the Hartley or Shannon index only differ from each other by
numerical constants.

Although the set of positions and momenta of the molecules in a gas at a given
instant can thus be considered as information, within amicroscopic interval (between
atomic collisions, of the order of 0.1 ps) this set is forgotten and another set is real-
ized. The positions and momenta constitute microscopic information; the quantity of
macroscopic (remembered) information is zero. In general, the quantity of macroin-
formation is far less than the quantity of (forgotten) microinformation, but the former
is far more valuable.4

In the world of engineering, this state of affairs has of course always been recog-
nized. One does not need to know the temperature (within reason!) in order to design
a bridge or a mechanism. The essential features of any construction are found in a
few large-scale correlated motions; the vast number of uncorrelated, thermal degrees
of freedom are generally unimportant.

Symbol and Word Entropies The Shannon index (2.5) gives the average
information per symbol; an analogous quantity In can be defined for the probability
of n-mers (n-symbol “words”), whence the differential entropy Ĩn ,

Ĩn = In+1 − In , (2.11)

whose asymptotic limit (n → ∞) Shannon calls “entropy of the source”, is ameasure
of the information in the (n +1)th symbol, assuming the n previous ones are known.
The decay of Ĩn quantifies correlations within the symbolic sequence (an aspect of
memory).

4“Forgetting” implies decay of information; what does “remembering” mean? It means to bring a
system to a defined stable state (i.e., one of two or more states), and the system can only switch to
another state under the influence of an external impulse. The physical realization of such systems
implies a minimum of several atoms; as a rule a single atom, or a simple small molecule, can
exist in only one stable state. Among the smallest molecules fulfilling this condition are sugars
and amino acids, which can exist in left- and right-handed chiralities. Note that many biological
macromolecules and supramolecular assemblies can exist in several stable states.
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2.1 Structure and Quantity

In our discussion so far we have tacitly assumed that we know a priori the set from
which the actual measurement will come. In an actual physical experiment, this is
like knowing from which dial we shall take readings of the position of the pointer,
for example, and, furthermore, this knowledge may comprise all the information
required to construct and use themeter, which is farmore than that needed to formally
specify the circuit diagram and other details of the construction. It would also have to
include blueprints for the machinery needed to make the mechanical and electronic
components, for manufacturing the required materials from available matter, and so
forth. In many cases we do not need to concern ourselves about all this, because we
are only interested in the gain in information (i.e., loss of uncertainty) obtained by
receiving the result of the dial reading, which is given by Eq. (2.5). The information
pertinent to the construction of the experiment usually remains the same, hence
cancels out (Eq.2.7). In otherwords, the Shannon–Weaver index is strictly concerned
with the metrical aspects of information, not with its structure.

2.1.1 The Generation of Information

Prior to carrying out an experiment, or an observation, there is objective uncertainty
due to the fact that several possibilities (for the result) have to be taken into account.
The information furnished by the outcome of the experiment reduces this uncertainty:
R.A. Fisher (1951) defined the quantity of information furnished by a series of
repeated measurements as the reciprocal of the variance:

IF(x) ≤ 1/〈(xest − x)2〉 (2.12)

where IF is the Fisher information and the denominator of the right-hand side is the
variance of the estimator xest.5 One use of IF is tomeasure the encoding accuracy of a
population of neurons subject to some stimulus (Chap.17); maximizing IF optimizes
extraction of the value of the stimulus.6

2.1.2 Conditional and Unconditional Information

Information about real events that have happened (e.g., a volcanic eruption), or
about entities that exist (e.g., a sequence of DNA) is primarily unconditional; that
is, it does not depend on anything (as soon as information is encoded, however, it
becomes conditional on the code).

5The relation between the Shannon index and Fisher’s information, which refers to the intrinsic
accuracy of an experimental result, is treated by Kullback and Leibler (1951).
6An example is given by Karbowski (2000).

http://dx.doi.org/10.1007/978-1-4471-6702-0_17
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Scientific work has two stages:

1. Receiving unconditional information from nature (by making observations in the
field, doing experiments in the laboratory).

2. Generating conditional information in the formof hypotheses and theories relating
the observed facts to each other using axiom systems. The success of any theory
(whichmay be one of several) largely depends on general acceptance of the chosen
propositions and the mathematical apparatus used to manipulate the elements of
the theory; that is, there is a strongly social aspect involved.

Conditional information tends to be unified; for example, a group of scattered tribes,
or practitioners of initially disparate disciplines, may end up speaking a common
language (theymay then comprehend the information they exchange as being uncon-
ditional and may ultimately end up believing that there cannot be other languages).
Encoded information is conditional on agreement between emitters and receivers
concerning the code.

2.1.3 Experiments and Observations

Consider once again the example of the measurement of the length of an object using
a ruler and the information gained thereby. The gain presupposes the existence of a
world of objects and knowledge, including the ruler itself and its calibration in appro-
priate units of measurement. The overall procedure is captured, albeit imperfectly,
in Fig. 2.1.

The essential point is that “information” has two parts: a prior part embodied
by the physical apparatus, the knowledge required to carry out the experiment or
observation, and so forth; and a posterior part equal to the loss in uncertainty about
the system due to having made the observation. The prior part can be thought of
as specifying the set of possible values from which the observed value must come.
In a physical measurement, it is related to the structure of the experiment and the
instruments it employs, and the millennia of civilization that have enabled such
activities. The posterior part (I ) is sometimes called “missing information” because
once the prior part (K ) is specified, the system still has the freedom, quantified
by I , to adopt different microstates. In a musical analogy, K would correspond to
the structure of a Bach fugue and I to the freedom the performer has in making

Fig. 2.1 The procedures involved in carrying out an experiment, from conception to ultimate
dissemination
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interpretational choices while still respecting the structure.7 One could say that the
magnitude of I corresponds to the degree of logical indeterminacy inhering in the
system, in other words that part of its description that cannot be formulated within
itself; it is the amount of selective information lacking.

I can often be calculated according to the procedures described in the previous
section (the Hartley or Shannon index). If we need to quantify K , it can be done using
the concept of algorithmic information content (AIC) or Kolmogorov information,
which corresponds to the length of the most concise description of what is known
about the system (see Sect. 6.5). Hence, the total information I8 is the sum of the
ensemble (Shannon) entropy I and the physical (Kolmogorov) entropy K :

I = I + K . (2.13)

Mackay (1950) proposed the terms “logon” for the structural (prior) information,
equivalent to K in Eq. (2.13), and “metron” for themetrical (posterior) measurement.
The gain in information fromameasurement (Eq.2.7) fallswhollywithin themetrical
domain, of course, and within that domain, there is a prior and posterior component
(cf. Sect. 5.4).

To summarize, the Kolmogorov information K can be used to define the structure
of information and is calculated by considering the system used to make a mea-
surement. The result of the measurement is macroscopic, remembered information,
quantified by the Shannon index I . The gain in information equals (finalf − initiali
information):

I = (If + K ) − (Ii + K ) = If − Ii . (2.14)

In other words, it is unexceptionable to assume that the measurement procedure
does not change the structural information, although this must only be regarded as a
cautious, provisional statement. Presumably, any measurement or series of measure-
ments that overthrows the theoretical framework within which a measurement was
made does actually lead to a change in K . Equation (2.13) formalizes the notion of
quiddity qua essence, comprising substance (K ) and properties (I ). The calculation
of K will be dealt with in more detail in Chap.6. As a final remark in this section,
we note that the results of an experiment or observation transmitted elsewhere may
have the same effect on the recipient as if he had carried out the experiment himself.

Problem. Critically scrutinize Fig. 2.1 in the light of the above discussion and
attempt to quantify the information flows.

2.2 Constraint

Shannon puts emphasis on the information resulting from the selection from a set
of possible alternatives (implying the existence of alternatives)—information can
only be received where there is doubt. Much of the theory of information deals with

7Cf. Tureck (1995).
8Called the physical information of a system by Zurek (1989).

http://dx.doi.org/10.1007/978-1-4471-6702-0_6
http://dx.doi.org/10.1007/978-1-4471-6702-0_5
http://dx.doi.org/10.1007/978-1-4471-6702-0_6


18 2 The Nature of Information

signals, which operate on the set of alternatives constituting the recipient’s doubt
to yield a lesser doubt, or even certainty (zero doubt). Thus, the signals themselves
have an information content by virtue of their potential for making selections; the
quantity of information corresponds to the intensity of selection or to the recipient’s
surprise upon receiving the information. I from Eq. (2.5) gives the average infor-
mation content per symbol; it is a weighted mean of the degree of uncertainty (i.e.,
freedom of choice) in choosing a symbol before any choice is made.

If we are writing a piece of prose, and even more so if it is verse, our freedom of
choice of letters is considerably constrained; for example, the probability that “x”
follows “g” in an English text is much lower than 1

26 (or 1
27 if we include, as we

should, the space as a symbol). In other words, the selection of a particular letter
depends on the preceding symbol, or group of preceding symbols. This problem
in linguistics was first investigated by Markov, who encoded a poem of Pushkin’s
using a binary coding scheme admitting consonants (C) or vowels (V). Markov
(1913) proposed that the selection of successive symbols C or V no longer depended
on their probabilities as determined by their frequencies (v = V/(V + C), where V
and C are, respectively, the total numbers of vowels and consonants). To every pair
of letters (L j , Lk) there corresponds a conditional probability pjk ; given that L j has
occurred, the probability of Lk at the next selection is pjk . If the initial letter has a
probability a j , then the probability of the sequence (L j , Lk, Ll) = a j pjk pkl and so
forth. The scheme can be conveniently written in matrix notation:

→ C V
C pcc pcv

V pvc pvv

(2.15)

where pcc means the probability that a consonant is followed by another consonant,
and similarly for the other terms. The matrix is stochastic; that is, the rows must add
up to 1. If every column is identical, then there is no dependence on the preceding
symbol, and we revert to a random, or zeroth-order Markov, process. Suppose now
that observation reveals that the probability of C occurring after V preceded by C is
different from that of C occurring after V preceded by V, or even that the probability
of C occurring after VV preceded by C is different from that of C occurring after
VV preceded by V. These higher-order Markov processes can be recoded in strict
Markov form; thus, for the second-order process (dependency of the probabilities on
the two preceding symbols) “VVC” can be written as a transition from VV to VC,
and hence the matrix of transition probabilities becomes

→ CC CV VC VV
CC pccc pccv 0 0
CV 0 0 pcvc pcvv

VC pvcc pvcv 0 0
VV 0 0 pvvc pvvv

(2.16)
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and so on for higher orders. Notice that some transitions necessarily have zero prob-
ability.9

The reader may object that one rarely composes text letter by letter, but rather
word byword. Clearly, there are strong constraints governing the succession ofwords
in a text. The frequencies of these successions can be obtained by counting word
occurrences in very long text and are then used to construct the transition matrix,
which is, of course, gigantic even for a first-order process. We remark that a book
ending with “… in the solid state is greatly aided by this new tool” is more likely to
begin with “Rocket motor design received a considerable boost when …” than one
ending “I became submerged in my thoughts which sparkled with a cold light”.10

We note here that clearly one may attempt to model DNA or protein sequences
as Markov processes, as will be discussed in Part III. Markov chains as such will be
discussed more fully in Chap.6.

The notion of constraint applies whenever a set “is smaller than it might be”. The
classic example is that of road traffic lights, which display various combinations of
red, amber, and green, each of which may be on or off. Although 23 = 8 combi-
nations are theoretically possible, in most countries only certain combinations are
used, typically only four out of the eight. Constraints are ubiquitous in the universe
and much of science consists in determining them; thus, in a sense, “constraint” is
synonymous with “regularity”. Laws of nature are clearly constraints, and the very
existence of physical objects such as tables and aeroplanes, which have fewer degrees
of freedom than their constituent parts considered separately, is a manifestation of
constraint.

In this book we are particularly concerned with constraints applied to sequences.
Clearly, if aMarkovprocess is in operation, the variety of the set of possible sequences
generated from a particular alphabet is smaller than it would be had successive
symbols been freely selected; that is, it is indeed “smaller than it might have been”.
“Might have been” requires the qualification, then, of “would have been if successive
symbols had been freely (or randomly—leaving the discussion of ‘randomness’ to
Chap.6) selected”.We already know how to calculate the entropy (or information, or
Shannon index, or Shannon–Weaver index) I of a random sequence (Eq.2.5); there
is a precise way of calculating the entropy per symbol for a Markov process (see
Sect. 6.2), and the reader may use the formula derived there to verify that the entropy
of a Markov process is less than that of a “perfectly random” process. Using some
of the terminology already introduced, we may expand on this statement to say that
the surprise occasioned by receiving a piece of information is lower if constraint is
operating; for example, when spelling out a word, it is practically superfluous to say
“u” after “q”.

The constraints affecting the choice of successive words are a manifestation of
the syntax of a language. In the next chapter other ways in which constraint can

9See also Sect. 6.2.
10Good (1969) has shown that ordinary language cannot be represented even by a Markov process
of infinite order.

http://dx.doi.org/10.1007/978-1-4471-6702-0_6
http://dx.doi.org/10.1007/978-1-4471-6702-0_6
http://dx.doi.org/10.1007/978-1-4471-6702-0_6
http://dx.doi.org/10.1007/978-1-4471-6702-0_6
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operate will be examined, but for now we can simply state that whenever constraint
is present, the entropy (of the set we are considering, hence of the information
received by selecting a member of that set) is lower than it would be for a perfectly
random selection from that set.

This maximum entropy (which, in physical systems, corresponds to the most
probable arrangement; i.e., to the macroscopic state that can be arranged in the
largest number of ways)—let us call it Imax—allows us to define a relative entropy
Irel,

Irel = actual entropy

Imax
, (2.17)

and a redundancy R,
R = 1 − Irel . (2.18)

In a fascinating piece of work, Shannon (1951) established the entropy of English
essentially through empirical investigations using rooms full of people trying to guess
incomplete texts.11

More formally, the relative entropy (Kullback–Leibler distance)12 between two
(discrete) distributions with probability functions ak and bk is

R(a, b) =
∑

k

ak log2(ak/bk) . (2.19)

If ak is an actual distribution of observations, and bk is a model description approxi-
mating to the data,13 thenR(a, b) is the expected difference (expressed as the number
of bits) between encoding samples from ak using a code based on a and using a code
based on b. This can be seen by writing Eq. (2.19) as

R(a, b) = −
∑

k

bk log2 ak +
∑

k

ak log2 ak , (2.20)

where the first term on the right-hand side is called the cross-entropy of ak and bk ,
the expected number of bits required to encode observations from a when using a
code based on b rather than a. Conversely, R(a, b) is the gain in information if a
code based on a rather than b is used.

Suppose that P{x1, x2, . . . , xm} is the probability of having a certain pattern
(arrangement), or m-gram x1, x2, . . . , xm ,14 assumed to be ergodic (stationary sto-
chastic).15 Examples could be the English texts studied by Shannon; of particular
relevance to the topic of this book is the problem of predicting the nucleic acid base

11Note that most computer languages lack redundancy—a single wrong character in a program will
usually cause the program to halt, or not compile.
12Since R(a, b) �= R(b, a), it is not a true metric and is therefore sometimes called “divergence”
rather than “distance”.
13Possibly constructed a priori.
14See also Sect. 8.2.
15See Sect. 6.1.

http://dx.doi.org/10.1007/978-1-4471-6702-0_8
http://dx.doi.org/10.1007/978-1-4471-6702-0_6
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following a known (sequenced) arrangement. The conditional probability16 that the
pattern [(m − 1)-gram] x1, x2, . . . , xm−1 is followed by the symbol xm is

P{xm |x1, x2, . . . , xm−1} = P{x1, x2, . . . , xm−1, xm}
P{x1, x2, . . . , xm−1} . (2.21)

The “m-length approximation” to the entropy Sm , defined as the average uncertainty
about the next symbol, is

Sm = −
∑

x1,x2,...,xm−1

P{x1, x2, . . . , xm−1}

×
∑

x

P{xm |x1, x2, . . . , xm−1} log P{xm |x1, x2, . . . , xm−1} . (2.22)

It includes all possible correlations up to length m. Note that the first sum on the
right-hand side is taken over all possible preceding sequences, and the second sum
is taken over all possible symbols. The correlation information is defined as

km = Sm−1 − Sm (m ≥ 2) . (2.23)

S1 is simply the Shannon information (Eq.2.5). If the probability of the different
symbols is a priori equal, then the information is given by Hartley’s formula (2.4).17

For m = 1,
k1 = log n − S1 (2.24)

is known as the density information. By recursion we can then write

I = S +
∞∑

m=1

km (2.25)

the total information I being equal to log n. The first term on the right gives the
random component and is defined as S = limm→∞ Sm , and the second one gives the
redundancy. For a binary string, S = 1 if it is random, and the redundancy equals
zero. For a regular string like . . . 010101 . . ., S = 0 and k2 = 1; for a first order
Markov chain km = 0 for all m > 2.

2.2.1 TheValue of Information

In order to quantify value V , we need to know the goal toward which the information
will be used. D.S. Chernavsky (1990) points to two cases that may be considered:

(i) The goal can almost certainly be reached by some means or another. In this case
a reasonable quantification is

V = (cost or time required to reach goal without the information)

− (cost or time required to reach goal with the information) . (2.26)

16See Sect. 5.2.2.
17The effective measure complexity is the weighted sum of the km [viz.,

∑∞
m=2(m − 1)km ]—see

Eq.6.27.

http://dx.doi.org/10.1007/978-1-4471-6702-0_5
http://dx.doi.org/10.1007/978-1-4471-6702-0_6
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(ii) The probability of reaching the goal is low. Then it is more reasonable to adopt

V = log2
prob. of reaching goal with the information

prob. of reaching goal without the information
. (2.27)

With both of these measures, irrelevant information is clearly zero-valued.
Durability of information contributes to its value. Intuitively, we have the idea

that the more important the information, the longer it is preserved. In antiquity,
accounts of major events such as military victories were preserved in massive stone
monuments whose inscriptions can still be read today several thousand years later.
Military secrets are printed on paper or photographed using silver halide film and
stored in bunkers, rather than committed to magnetic media. We tend to write down
things we need to remember for a long time.

The value of information is closely related to the problem of weighing the cred-
ibility that one should accord a certain received piece of information. The question
of weighting scientific data from a series of measurements was an important driver
for the development of probability theory. In 1777, Daniel Bernoulli raised this issue
in the context of averaging astronomical data, where it was customary to simply
reject data deviating too far from the mean and weight all others equally.18 Bennett
(1988) has proposed that his notion of logical depth (Sect. 6.5) provides a formal
measure of value, very much in the spirit of Eqs. (2.26) and (2.27). A sequence of
coin tosses formally contains much information that has little value; a table giving
the positions of the planets every day for several centuries hence contains no more
information than the equations of motion and initial conditions from which it was
deduced, but saves anyone consulting it the effort of calculating the positions. This
suggests that the value of a message resides not in its information per se (i.e., its
absolutely unpredictable parts) nor in any obvious redundancy (e.g., repetition), but
rather in what Bennett has suggested be called buried redundancy: parts predictable
only with considerable effort on the part of the recipient of the message. This effort
corresponds to logical depth.

The value of information is also related to the amount already possessed. The
same Bernoulli asserted that the value (utility in economic parlance) of an amount
m of money received is proportional to log[(m + c)/c], where c is the amount of
money already possessed,19 and a similar relationship may apply to information.

18D. Bernoulli, Diiudicatio maxime probabilis plurium observationem discrepantium atque
verisimillima inductio inde formanda. ActaAcad. Sci. Imp. Petrop. 1 (1777) 3–23. See also L. Euler,
Observationes in praecedentem dissertationem illustris Bernoulli. Acta Acad. Sci. Imp. Petrop. 1
(1777) 24–33.
19Cf. Thomas (2010).

http://dx.doi.org/10.1007/978-1-4471-6702-0_6
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2.2.2 The Quality of Information

Quality is an attribute that brings us back to the problem posed by Bernoulli in 1777,
namely how to weight observations. If we return to our simple measurement of the
length of a piece of wood, the reliability may be affected by the physical condition
of the measuring stick, its markings, its origin (e.g., from a kindergarten or from
Sèvres), the eyesight of the measurer, and so forth.

2.3 Accuracy,Meaning, and Effect

2.3.1 Accuracy

In the preceding sections, we have focused on the information gained when a certain
signal, or sequence of signals, is received. The quantity of this information I has been
formalized according to its statistical properties. I is of particular relevance when
considering how accurately a certain sequence of symbols can be transmitted. This
question will be considered in more detail in Chap.3. For now, let us merely note
that no physical device can discriminate between pieces of information differing by
arbitrarily small amounts. In the case of a photographic detector, for example, dimin-
ishing the difference will require larger and larger detectors in order to discriminate,
but photon noise places an ultimate limitation in the way of achieving arbitrarily
small detection.

A communication system depending on setting the position of a pointer on a dial
to 1 of 6000 positions and letting the position be observed by the distant recipient of
the message through a telescope, while allowing a comfortably large range of signs
to be transmitted, would be hopelessly prone to reading errors, and it was long ago
realized that far more reliable communication could be achieved by using a small
number of unambiguously uninterpretable signs (e.g., signalling flags at sea) that
could be combined to generate complex messages.20

Practical information space is thus normally discrete; for example, meteorological
bulletins do not generally give the actual wind speed in kilometres per hour and the
direction in degrees, but refer to 1 of the 13 points of the Beaufort scale and 1 of the
8 compass points. The information space is therefore a finite 2-space with 8 × 13
elements.

20The same principle applies, in vastly extended form, to the principal systems of writing extant
on Earth. In the Chinese system one character, which may be quite elaborate, represents an entire
word, which could itself represent (often in a context-dependent fashion) an entire concept. In the
alphabetical system, words are built up from syllables. Where there is no difficulty in perceiving a
text in full detail, preferably a whole page at a time, the Chinese system must be superior, having
more force of expression and enabling the information to be appraised more rapidly. In other cases,
such as transmitting messages long distances through a noisy channel, the alphabetic system has
evident advantages.

http://dx.doi.org/10.1007/978-1-4471-6702-0_3
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The rule for determining the distance between two words (i.e., the metric of
information space) is most conveniently perceived if the words are encoded in binary
form. The Hamming distance is the number of digit places in which the two words
differ.21 This metric satisfies the usual rules for distance; that is, if a, b, and c are
three points in the space and D(a, b) is the distance between a and b, then

D(a, a) = 0 ;
D(a, b) = D(b, a) > 0 if b �= a ;

D(a, b) + D(b, c) ≥ D(a, c) .

Other distances can be defined (see Sect. 13.4.2).
In biology, the question of accuracy refers especially to the replication of DNA, its

transcription into RNA, and the translation of RNA into protein. It may also refer to
the accuracywith which physiological signals can be transmitted within and between
cells.

2.3.2 Meaning

Shannon’s theory is not primarily concerned with the question of semantic content
(i.e., meaning). In the simple example of measuring the length of a piece of wood,
the question of meaning scarcely enters into the discourse. In nearly all of the other
cases, where we are concerned with receiving signs, or sequences of symbols, after
we have received them accurately we can start to concern ourselves with the question
of meaning. The issues can range from simple ones of interpretation to involved and
complex ones. An example of the former is the interpretation of the order “Wait!”
heard in a workshop. It may indeed mean “pause until further notice”, but heard
by an apprentice standing by a weighing machine, may well be interpreted as “call
out the weight of the object on the weighing pan”. An example of the latter is the
statement “John Smith is departing for Paris”, which has very different connotations
according to whether it was made in an airport, a railway station or some other place.

It is easy to show that the meaning contained in a message depends on the set of
possible messages. Ashby (1956) has constructed the following example. Suppose a
prisoner-of-war is allowed to send a message to his family. In one camp, the message
can be chosen from the following set:

I am well
I am quite well
I am not well
I am still alive,

and in another camp, only one message may be sent:

I am well.

21Cf. J.E. Surrick and L.M. Conant, Laddergrams, New York: Sears (1927): “Turn bell into ring in
six moves” and so forth; and Sect. 13.4.3.

http://dx.doi.org/10.1007/978-1-4471-6702-0_13
http://dx.doi.org/10.1007/978-1-4471-6702-0_13
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In both cases, there is implicitly a further alternative—nomessage at all, whichwould
mean that the prisoner is dying or already dead. In the second camp, if the recipient
is aware that only one message is permitted, he or she will know that it encompasses
several alternatives, which are explicitly available in the first camp. Therefore, the
samemessage (I amwell) canmean different things depending on the set fromwhich
it is drawn.

In much human communication, it is the context-dependent difference between
explicit and implicit meaning that is decisive in determining the ultimate outcome
of the reception of information. In the latter example of the previous paragraph, the
context—here provided by the physical environment—endows the statement with
a large complement of implicit information, which mostly depends on the mental
baggage possessed by the recipient of the information; for example, the meaning
of a Chinese poem may only be understandable to someone who has assimilated
Chinese history and literature since childhood, and will not as a rule be intelligible
to a foreigner armed with a dictionary.

A very similar state of affairs is present in the living cell. A given sequence of
DNA will have a well-defined explicit meaning in terms of the sequence of amino
acids it encodes, and into which it can be translated. In the eukaryotic cell, however,
that amino acid sequence may then be glycosylated and further transformed, but in
a bacterium, it may not be; indeed it may even misfold and aggregate—a concrete
example of implicit meaning dependent on context.

The importance of context in determining implicit meaning is even more graph-
ically illustrated in the case of the developing multicellular organism, in which the
cells are initially all identical; according to chemical signals received from their
environment they will develop into different kinds of cells. The meaning of the
genotype is the phenotype, and it is implicit rather than explicit meaning, which is,
of course, why the DNA sequence of any earthly organism sent to an alien civiliza-
tion will not allow them to reconstruct the organism. Ultimately, most of the cells
in the developing embryo become irreversibly different from each other (differen-
tiation), but while they are still pluripotent, they may be transplanted into regions
of different chemical composition and change their fate; for example, a cell from
the non-neurogenic region of one embryo transplanted into the neurogenic region
of another may become a neuroblast (Sect. 10.8.2). The mechanism of such trans-
formations will be discussed in a little more detail in Chap.10, but here this type of
phenomenon serves to illustrate how the implicit meaning of the genome dominates
the explicit meaning. This implicit meaning is called epigenetics,22 and it seems
clear that we will not truly understand life before we have developed a powerful way
of treating epigenetic phenomena. Shannon’s approach has proved very powerful for
treating the problem of the accurate transmission of signals, but at present we do

22Cf. Sects. 10.8.2 and 10.8.3.

http://dx.doi.org/10.1007/978-1-4471-6702-0_10
http://dx.doi.org/10.1007/978-1-4471-6702-0_10
http://dx.doi.org/10.1007/978-1-4471-6702-0_10
http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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not have a comparable foundation for treating the problem of the precise transfer of
meaning.23

Even at the molecular level, at which phenotype is more circumscribed and could
be considered to be the function (of an enzyme), or simply the structure of a protein,
there is presently little understanding of the relation between sequence and function,
as illustrated by the thousands of known different sequences encoding the same type
of structure and function, or different sequences encoding different structures but the
same type of function, or similar structures with different functions.

Part of the difficulty is that the function (i.e., biological meaning) is not so con-
veniently quantifiable as the information content of the sequence encoding it. Even
considering the simpler problem of structure alone, there are various approaches
yielding very different answers. Supposing that a certain protein has a unique struc-
ture [most nonstructural proteins have, of course, several (at least two) structures in
order to function; the best-known example is probably haemoglobin]. This structure
could be specified by the coordinates of all the constituent atoms, or the dihedral
angles of each amino acid, listed in order of the sequence, and at a given resolution
[Dewey (1996, 1997) calls this the algorithmic complexity of a protein; cf. K in
Eq. (2.13)]. If, however, protein structures come from a finite number of basic types,
it suffices to specify one of these types, which moves the problem back into one
dealing with Shannon-type information.

In the case of function, a useful starting point could be to consider the immune
system, in which the main criterion of function is the affinity of the antibody (or,
more precisely, the affinity of a small region of the antibody) to the target antigen.
The discussion of affinity and how affinities can lead to networks of interactions will
be dealt with in Chap.16.

The problem of assigning meaning to a sign, or a message (a collection of signs),
is usually referred to as the semantic problem. Semantic information cannot be
interpreted solely at the syntactical level. Just as a set of antibodies can be ranked
in order of affinity, so may a series of statements be ranked in order of semantic
precision; for example, consider the statements:

A train will leave.
A train will leave London today.
An express train will leave London Marylebone for Glasgow at 10:20 a.m. today.

and so on. Postal or e-mail addresses have a similar kind of syntactical hierarchy.
Although we are not yet able to assign numerical values to meanings, we can at least
order them.

Carnap and Bar-Hillel (1952) have framed a theory, rooted in Carnap’s theory of
inductive probability, attempting to do for semanticswhat Shannon did for the techni-
cal content of a message. It deals with the semantic content of declarative sentences,

23Given that translation (from nucleic acid to protein) is involved, the proverb “traduttori traditori”
is quite apt.

http://dx.doi.org/10.1007/978-1-4471-6702-0_16
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excluding the pragmatic aspects (dealing with the consequences or value of received
information for the recipient). It does not deal with the so-called semantic problem of
communication, which is concerned with the identity (or approach thereto) between
the intended meaning of the sender and the interpretation of meaning by the receiver:
Carnap and Bar-Hillel place this explicit involvement of sender and receiver in the
realm of pragmatics.

To gain a flavour of their approach, note that the semantic content of sentence
j , conditional on having heard sentence i , is content( j |i) = content(i & j) −
content(i), and their measure of information is defined as information(i) = − log2
content(NOT i). They consider semantic noise (resulting in misinterpretation of a
message, even though all of its individual elements have been perfectly received) and
semantic efficiency, which takes experience into account; for example, a language
with the predicates W, M, and C, designating respectively warm, moderate, and cold
temperatures, would be efficient in a continental climate (e.g., Switzerland or Hun-
gary) but would become inefficient with a move to the western margin of Europe,
since M occurs much more frequently there.

Although the quantification of information is deliberately abstracted from the
content of a message, taking content into account may allow much more dramatic
compression of a message than is possible using solely the statistical redundancy
(Eq.2.18). Consider how words such as “utilization” may be replaced by “use”,
appellations such as “guidance counsellor” by “counsellor”, and phrases such as “at
this moment in time” by “at this moment”, or simply “now”.Many documents can be
thus reduced in length by over two-thirds without any loss in meaning (but a consid-
erable gain in readability). With simply constructed texts, algorithmic procedures for
accomplishing this that do not require the text to be interpreted can be devised; for
example, all the words in the text can be counted and listed in order of frequency of
occurrence, and then each sentence is assigned a score according to the numbers of
the highest-ranking words (apart from “and”, “that”, etc.) it contains. The sentences
with the highest scores are preferentially retained.

2.3.3 Effect

A signal may be accurately received and its meaning may be understood by the
recipient, but that does not guarantee that it will engender the response desired by
the sender. This aspect of information deals with the ultimate result and the possibly
far-reaching consequences of a message and how the deduced meaning is related to
human purposes. The question of the value of information has already been discussed
(Sect. 2.2.1), and operationally it comes close to a quantification of effect.

Mackay has proposed that the quantum of effective information is that amount
that enables the recipient to make one alteration to the logical pattern describing his
awareness of the relevant situation, and this would appear to provide a good basis for
quantifying effect. Suppose that an agent has a state of mind M1, which comprises
certain beliefs, hypotheses, and the like (the prior state). The agent then hears a
sentence, which causes a change to state of mind M2, the posterior state, which
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stands in readiness to make a response. If the meaning of an item of information is
its contribution to the agent’s total state of conditional readiness for action and the
planning of action (i.e., the agent’s conditional repertoire of action), then the effect
is the ultimate realization of that conditional readiness in terms of actual action.24

As soon as we introduce the notion of a conditional repertoire of action, we see
that selection must be considered. Indeed, the three essential attributes of an agent
are (and note the parallel with the symbolic level) as follows:

1. A repertoire, from which alternative actions can be selected;
2. An evaluator, which assigns values to different states of affairs according to either

given or self-set criteria;
3. A selector, which selects actions increasing a positive evaluation and diminishing

deleterious evaluation.

One may compare this procedure with that of evolutionary computation (Sect. 8.1),
and, a fortiori, with that of evolution itself. Here, the selected actions are used to build
up a presence in the repertoire (and, assuming that the repertoire remains constant
in size, unselected actions will be diminished).

2.3.4 Significs

As summarized by Welby (1911), significs comprises (a) sense (“in what sense
is a word used?”), (b) meaning (the specific sense a word is intended to convey),
and (c) significance—the far-reaching consequence, implication, ultimate result, or
outcome (e.g., of some event or experience). It therefore includes semantics but goes
well beyond it.

Problem. Discuss how the significs of n-grams of DNA and of peptides (regulatory
oligopeptides and proteins) could be developed.

2.4 Further Remarks on Information Generation

The exercise of intellect involves both the transformation and generation of informa-
tion, the latter quite possibly involving the crossing of some kind of logical gap. It
is a moot point whether the solution of a set of equations contains more information
than the equations, since the solution is implicit (and J.S. Mill insisted that induction,
not deduction, is the only road to new knowledge). If it does not, are we then no
more complex than a zygote, which apparently contains all the information required
to generate a functional adult?

24Wiener subsumes effect into meaning in his definition of “meaningful information”.

http://dx.doi.org/10.1007/978-1-4471-6702-0_8
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The reception of information is equivalent to ordering (i.e., an entropy decrease)
and corresponds to the various ordering phenomena seen in nature. Three categories
can be distinguished:

1. Order from disorder [sometimes called “self-organization” (see also Sect. 9.8)25];
2. Order from order (a process based on templating, such as DNA replication or

transcription);
3. Order from noise (microscopic information is given macroscopic expression).

The only meaningful way of interpreting the first category is to suppose that the
order was implicit in the initial state; hence, it is questionable whether information
has actually been generated. In the second category, the volume of ordering has
increased, but inevitably at the expense of more disorder elsewhere, because of the
physical exigencies of the copying process.26 Note that copying per se does not lead
to an increase in the amount of information. The third category is of genuine interest,
for it illuminates problems such as that of the development of the zygote, in which
environmental information is given meaningful macroscopic expression, such that
we are indeed more complex than the zygotes whence we sprang.

Problem. Examine the proposition that the production and dissemination of copies
of a document reporting new facts does not increase the amount of information.

2.5 Summary

Information is that which removes uncertainty. It has two aspects: form (what we
already know about the system) and content, the result of an operation (e.g., a mea-
surement) carried out within the framework of our extant knowledge. Form specifies
the structure of the information. This includes the specification of the set of possible
messages that we can receive or the (design and fabrication of and way of using) the
instrument used to measure a parameter of the system. It can be quantified as the
length of the shortest algorithm able to specify the system (Kolmogorov informa-
tion). If we know the set from which the result of the measurement operation has to
come, the (metrical) content of the operation is given by the Shannon index (reducing
to the Hartley index if the choices are equiprobable). A message (e.g., a succession
of symbols) that directs our selection is, upon receipt, essentially equivalent to the
result of the measurement operation encoded by the message. The Shannon index
assumes that the message is known with certainty once it has been received; if it is
not, the Wiener index should be used.

25But anyway see the critiques of von Foerster (1960) and of Ashby (1962). We may, however,
consider self-organization as programmable self-assembly.
26The creation of disorder could be avoided by doing things perfectly reversibly, but that implies
doing them infinitely slowly and is, hence, scarcely of practical interest.

http://dx.doi.org/10.1007/978-1-4471-6702-0_9


30 2 The Nature of Information

Information can be represented as a sign or as a succession of signs (symbols). The
information conveyed by each symbol equals the freedom in choosing the symbol. If
all choices are a priori equiprobable, the specification of a sequence removes uncer-
tainty maximally. In practice, there may be strong syntactical constraints imposed
on the successive choices, which limit the possible variety in a sequence of symbols.

In order to be considered valuable (or desired), the received information must
be remembered (macroscopic information). Microinformation is not remembered.
Thus, the information inherent in the positions and momenta of all the gas molecules
in a room is forgotten picoseconds after its reception. It is of no value.

Information can be divided into three aspects: the signs themselves, their syntax
(their relation with each other), and the accuracy with which they can be transmitted;
their meaning, or semantic value (i.e., their relation to designata); and their effect
(how effectively the received meaning affects the conduct of the recipient in the
desired way), which may be called pragmatics, the study of signs in relation to their
users, or significs, the study of significance.27 In other words, content comprises the
signs themselves and their syntax (i.e., the relation between them), their meaning
(semantic value), and their effect on the conduct of the recipient (i.e., does it lead
to action?). A further aspect is that of style, very difficult to quantify. It can be
considered to be determined by word usage frequencies, from which the cybernetic
temperature can be derived (cf. Eq.3.7). An indication of style (cf. biomarkers giving
an indication of disease) might be given by the occurrence of certain characteristic
words, including the use of a certain synonym rather than another. If a symbolic
sequence is modelled as a Markov chain, matters of style would be encapsulated in
hidden Markov models (q.v.).

Meaningmaybe highly context-dependent; the stronger this dependence, themore
implicit the meaning.

The effect of receipt of information on behaviour can be quantified in terms
of changes to the logical pattern describing the awareness of the recipient to his
environment. In simpler terms, this may be quantified as value in terms of a change
in behaviour (assuming that enough data on replicate systems or past events are
available to enable the course of action that would have taken place in the absence
of the received information to be determined).

Information is inherently discrete (quantal) and thus based on combinatorics,
which also happens to suit the spirit of the digital computer. In biology, if “geno-
type” constitutes the signs, then “phenotype” constitutes meaning. Action is self-
explanatory and linked to adaptation (see Sect. 9.2). Biological function might be
considered to be the potential for action.

27These three aspects, namely of syntactics, semantics, and pragmatics, are usually considered to
constitute the theory of signs, or semiotics.

http://dx.doi.org/10.1007/978-1-4471-6702-0_3
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3TheTransmissionof Information

In the previous chapter, although we spoke of the recipient of a message, implying
also the existence of a dispatcher, the actual process of communicating between
emitter and receiver remained rather shadowy. The purpose of this chapter is to
explicitly consider transmission or communication channels.

Information theory grew up within the context of the transmission of messages
and did not concern itself with appraisal of the meaning of a message. Later,
Shannon (1951) (and others) went on to study the redundancy present in natural
languages, since if the redundancy is taken into account in coding, the message can
be compressed, and more information can be sent per unit time than would other-
wise be possible (although, as we have noted in the previous chapter, much more
compression may be achieved at the level of semantics or style).

Physically, channels can be extremely varied. The archetype used to be the copper
telephone wire; nowadays, it would be an optical fibre. Consider the receipt of a
weather forecast. A satellite orbiting the Earth emits an image of a mid-Atlantic
cycloneor a remoteweather station emitswind speed and temperature.Taking thefirst
case, photons first had to fall on a detector array, initiating the flow of electrons along
wires. These flows were converted into binary impulses (representing black or white;
i.e., light or dark on the image) preceded by the binary address of each pixel. In turn,
these electronic impulses were converted into electromagnetic radiation and beamed
towards the Earth, where theywere converted back into electrical pulses used to drive
a printer, which produced an image of the cyclone on paper. This picture was viewed
by the meteorologist, photons falling on his retina were converted into an internal
representation of the cyclone in the meteorologist’s brain, after some processing he
composed a few sentences expounding the meaning of the information and its likely
effect, these sentences were then spoken, involving the passage of neural impulses
from brain to vocal chords, the sound emitted from his mouth travelled through
the air, actuating resistance, hence electronic current fluctuations in a microphone,
which travelled along a wire to be again converted into electromagnetic radiation,
broadcast, and picked up by a wireless receiver, converted back into acoustic waves
travelling through the air, picked up by the intricate mechanism of the ear, converted
into nervous impulses, and processed by the brain of the listener. According to the
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nature of the message, muscles may then have been stimulated in order to make the
listener run outside and secure objects from being blown away, or whatever. Perhaps,
during the broadcast, somewordsmayhave been rendered unintelligible by unwanted
interference (noise). It should also be mentioned that the whole process did not,
of course, happen spontaneously, but the satellite and attendant infrastructure had
previously been launched by themeteorologist with the specific purpose of providing
images useful in weather forecasting. From this little anecdote we may gather that
the transmission of information involves coding and decoding (i.e., transducing)
messages, that transmission channels are highly varied physically, and that noise
may degrade the information received.

Inside the living cell, it may be perceived that similar processes are operating.
Sensors on the cell surface register a new carbon source, more abundant than the
one on which the bacterium has been feeding, a conformational change in the sensor
protein activates its enzymatic (phosphorylation) capability,1 some proteins in its
vicinity are phosphorylated, in consequence change conformation, and then bind to
the promoter site for the gene of an enzyme able to metabolize the new food source.
Messenger RNA is synthesized, templating the synthesis of the enzyme, which may
be modified after translation. The protein folds to adopt a meaningful, enzymati-
cally active structure and begins to metabolize the new food perfusing into the cell.
Concomitant changes may result in the bacterium adopting a different shape—its
phenotype changes.2

In very general terms, semiotics is the name given to the study of signals used
for communication. In the previous chapter, the issues of the accuracy of signal
transmission, the syntactical constraints reducing the variety of possible signals, the
meaning of the signals (semantics), and their ultimate effect were broached. In this
chapter we shall be mainly concerned with the technical question of transmission
accuracy, although we shall see that syntactical constraints play an important rôle in
considering channel capacity. We noted at the beginning of Chap.2 that information
theory has traditionally focused on the processes of transmission. In classical infor-
mation theory, as exemplified by the work of Hartley (1928) and especially Shannon
(1948), the main problem addressed is the capacity of a communication channel for
error-free transmission. This problemwas highly relevant to telegraph and telephone
companies, but they were not in the least concerned with the nature of the messages
being sent over their networks.

Some features involved in communication are shown in Fig. 3.1. Therewill always
be a source (emitter), channel (transmission line), and sink (receiver), and encoding
is necessary even in the simplest cases: For example, a man may say a sentence to a
messenger who then runs off and repeats the message to the addressee, but of course
to be able to do that he had to remember the sentence, which involved encoding
the words as patterns of neural firing. Even if one simply speaks to an interlocutor
and regards the mouth as the source, the mouth is not the receiver: The sounds are

1Section14.7.
2These processes are considered in more detail in Chap.10.
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Fig. 3.1 Schematic diagram of subprocesses involved in transmitting a signal from a source to a
receiver. Not all of the subprocesses shown are necessary, as discussed in the text. Noise may enter
from the environment or may be intrinsic to the channel hardware

encoded as patterns of air waves and decoded via tiny mechanical movements in the
ear.

What is the flow of information in the formal scheme of Fig. 3.1? In the previous
chapter we essentially only considered one agent, who himself carried out an oper-
ation (such as measuring the length of a piece of wood), which reduced uncertainty
and hence resulted in a gain of information according to Eq. (2.7) and further quan-
tified by Eq. (2.5). We now consider that the information is encoded and transmitted
(Fig. 3.2); indeed, it could be broadcast to an unlimited number of people. If they
desired to know the length of that piece of wood and if the structure of their ignorance
was the same as that of the measurer prior to the measurement (i.e., that the wood
was less than a foot long, and they expected to receive the length in inches), then
all those receiving that information would gain the same amount. The transmitted
signals therefore have the potential for making a selection, by operating on the pre-
defined set of alternatives, in exactly the same way as the actual act of measurement
itself. The information content of signals is based on this potential for discrimination.
Hartley (1928), in his pioneering paper, referred to the successive selection of signs
from a given list. This is of course precisely what happens when sending a telegram.

Fig. 3.2 Schematic diagram of the subprocesses involved in carrying out a physical experiment
and transmitting the results

http://dx.doi.org/10.1007/978-1-4471-6702-0_2
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36 3 The Transmission of Information

3.1 The Capacity of a Channel

Channel capacity is essentially dependent on the physical form of the channel. If the
channel is constituted by a runner bearing a scroll on which the message is inscribed,
the capacity, in terms of number of messages per day, depends on the distance the
runner has to cover, the nature of the terrain, his physique, and so on.3 Similarly, the
capacity of a heliograph signalling system (in flashes per minute) depends on the
dexterity of the operators working the mirrors and the availability of sunlight.

It is obviously convenient, when confronted with the practicalities of comparing
the capacities of different channels (for example, a general in the field may have to
decidewhether to rely on runners or set up a heliograph) to have a common scale with
which the capacities of different channels may be compared. A channel is essentially
transmitting variety. A runner can clearly convey a great deal of variety, since he
could bear a large number of different messages. If he can comfortably carry a sheet
on which a thousand characters are written, and assuming that the characters are
selected from the English alphabet plus space, then the variety of a single message
is 1000 log2 27 = 4754 bits to a first approximation. If the runner can convey three
scrolls a day, the variety is then 3 × 4754/(12 × 3600) = 0.33 bits per second,
assuming 12h of good daylight.

The heliograph operator, on the other hand, may be able to send one signal per
second, with a linear variety of two (flash or no flash); that is, during the 12h of good
daylight, he can transmit with a rate of log2 2 = 1 bit/s.

It may be, of course, that the messages the general needs to send are highly
stereotyped. Perhaps there are just 100 different messages that might need to be
sent.4 Hence, they could be listed and referred to by their number in the list. Since
the number 100 (in base 10) can be encoded by log2 100 = 6.64 bits, any of the
100 messages could be sent within 7 s. Furthermore, if experience showed that only
10 of the messages were sent rather frequently (say with probability 0.05 each), and
the remaining 90 with probability 0.5

90 , application of Eq. (2.5) shows that 5.92 bits
would suffice, so that a more compact coding of the 100 messages could in principle
be found.5

We note in passing, with reference to Eq. (2.13), that all of the details of the
physical construction of the heliograph, or whatever system is used, and including
the table of 100 messages assigning a number to each one, so only the number needs
to be sent, are included in K . Should it be necessary to quantify K , it can be done
via the algorithmic complexity (AIC; see Sect. 6.5), but as far as the transmission of
messages is concerned, this is not necessary, since we are only concerned with the
gain of information by the recipient (cf. Eq.2.14).

3Note that here the information source is the brain of the originator of the message, and the encoder
is the brain-hand-pen system that results in the message being written down on the scroll.
4Such stereotypy is extensively made use of in texting with a cell phone.
5Note that Shannon’s theory does not give any clues as to how the most compact coding can be
found.

http://dx.doi.org/10.1007/978-1-4471-6702-0_2
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The meaning of each message (i.e., an encoded number) sent under the second
scheme could potentially be very great. It might refer to a book full of instructions.
Here we shall not consider the effect of the message (cf. Sect. 2.3.3).

Another point to consider is possible interference with the message. The runner
would be a target for the enemy; hence, it may be advisable to send, say, three runners
in parallel with copies of the same message. It might also have been found that the
distant heliograph operator had difficulty in receiving the flashes reliably from the
sender, and it might therefore have been decided to repeat each flash three times
and the recipient would use majority selection on each group of three to deduce the
message. The capacity of the channel would thereby be lowered threefold.

In many practical cases, the physical medium for transmitting messages has to be
shared bymany different messages. It is a great advantage of optical communications
that streams of photons of different wavelengths do not interfere with one another.
Therefore, an optical fibre can carry many independent signals. Inside a cell, in
which the cytoplasm is a shared medium, many different molecules are present and
independence is determined by the differential chemical affinities between pairs
of molecules.

3.2 Coding

Coding refers to the transduction of a message into another form. It is ubiquitous
in our world. Ideas are encoded into words, music, pictures, one language may be
encoded into another, and so on. We have already made extensive use of binary
coding; the compact disk-based recording industry today uses binary coding almost
exclusively for music, pictures and words. Evidently any number can be written in
base 2; hence, a possible drill (algorithm) for binary coding consists of the follow-
ing steps:

1. Assign a number to each state to be encoded;
2. Convert that number into base 2.

A DNA sequence can thereby be converted into binary form by making the assign-
ments A → 1, C → 2, T → 3, and G → 4, which in base 2 are 1, 10, 11, and
100, respectively. The coded sequence would have to be written (001, 010, etc.)
and read in groups of three digits, otherwise “AA” could be misinterpreted as “T”
and so forth. Alternatively, separators can be introduced (see also the Huffman code
described near the beginning of Sect. 3.4). The reading frame is thus defined as the
series of groups of three beginning with the first. DNA is an example of a usually
nonoverlapping code of contiguous triplets.

Codes may be written as transformations, e.g.,

↓ A B C D · · · Z
B C D E · · · A

,

http://dx.doi.org/10.1007/978-1-4471-6702-0_2
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which could also be written down compactly by the instruction “replace each letter
by the next one to the right” (sfqmbdf fbdi mfuufs cz uif ofyu pof up uif sjhiu).
A scheme for recoding DNA could be

↓ A C T G
1 2 3 4

in any base above 4. As is well known, DNA is encoded by RNA using the
transformation6

↓ A C T G
U G A C

by virtue of complementary base-pairing, and RNA triplets are, in turn, encoded by
amino acids (Table3.1).

Table 3.1 The genetic code

First (5′) Second position Third (3′)
U C A G

U phe ser tyr cys U

phe ser tyr cys C

leu ser stop stop A

leu ser stop trp G

C leu pro his arg U

leu pro his arg C

leu pro gln arg A

leu pro gln arg G

A ile thr asn ser U

ile thr asn ser C

ile thr lys arg A

met thr lys arg G

G val ala asp gly U

val ala asp gly C

val ala glu gly A

val ala glu gly G

Note The table is given for RNA; for DNA, T must be used in place of U. See Table11.6 for the
key to the amino acid abbreviations. “stop” is an instruction to stop sequence translation. AUG
encodes the corresponding instruction to “start” (in eukaryotes; sometimes other triplets are used
in prokaryotes).

6Since DNA is composed of two complementary strands, one could equally well write the coding
transformation as

↓ A C T G
A C U G

.

http://dx.doi.org/10.1007/978-1-4471-6702-0_11


3.2 Coding 39

Codes used in telecommunications are single-valued and one-to-one
transformations (i.e., bijective functions), which allows unambiguous decoding. The
type of coding found in biology is more akin to that described for the broadcast
meteorological bulletin described at the beginning of this chapter, in which the physi-
cal carrier of the information changes and the bare technical content accruesmeaning.
In that example, supposing that the satellite was defined as the information source,
the meteorologist could scarcely have made sense, in his head, of the stream of pixel
densities, but as soon as they were interpreted by writing them down as black and
white squares (which he could have done with pencil on paper had he been aware
of the structure of the information, especially the order in which the pixels were to
be arranged) it would have been apparent that they code for a picture; that is, there
is a jump in meaning. So it is in biology—the amino acid sequence is structured in
such a way that meaning is accrued, not only as a three-dimensional structure but as
a functional enzyme or structural element, able to interact with other molecules.

Coding—signal transduction—is ubiquitous throughout the cell and between
cells. Typically, a state of a cell is encoded as a particular concentration level of
a small molecule (cf. Tomkins’ 1975 “metabolic code”). For encoding this kind of
information, a small number of smallmolecules, such as cyclic adenosinemonophos-
phate (cAMP) and calcium ions (Ca2+), is used. The chemical nature of these mole-
cules is usually unrelated to the nature of the information they encode (see Chap.16
for details).

3.3 Decoding

Themain requirement for decoding in a transmission scheme is that the coding trans-
formation is one-to-one and, hence, each encoded symbol has a unique inverse. In
biological systems, decoding (in the sense of reconstituting the original message)
may be relatively unimportant at the molecular level; the encoded message is typi-
cally used directly, without being decoded back into its original form as envisaged
in Fig. 3.2.

The problem of decoding the simple transformations described in the previous
section is straightforward. Consider now a scheme for encoding that uses a machine
that can be in one of four states {A, B,C, D} and that the transformation depends
on an input parameter that can be one of {Q, R, S}. In tabular form,

↓ A B C D
Q D A B C
R C D A B
S B C D A

(3.1)

Given an initial state, an input message in the form of a sequence of parameter values
will result in a particular succession of states adopted by the machine; for example, if
the machine (transducer) starts in state B, the parameter stream Q QS RQ will result

http://dx.doi.org/10.1007/978-1-4471-6702-0_16
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in the subsequent output A, D, A,C, B. In tabular form,

Input state: Q Q S . . .

Transducer state : B A D A
(3.2)

The problem faced by the decoder (inverter) is that although each transition gives
unambiguous information about the parameter value under which it occurred, the
two states involved did not exist at the same epoch; hence, one of the decoder’s
inputs must in effect behave now according to what the encoder’s output was. This
problem may be solved by introducing a delayer, represented by the transformation

↓ q r s
Q q q q
R r r r
S s s s

(3.3)

The encoder provides input (is joined) to the delayer and the decoder, and the delayer
provides an additional input (is joined) to the decoder (see the following example).

Example. Consider a transducer (encoder) with the transformation n′ = n + a,
where a is the input parameter and n is the variable.7 The inverting solution of the
transducer’s equation is evidently a = n′ − n, but since n′ and n are not available
simultaneously, a delayer is required. The delayer should have the transformation
n′ = p, with n as the parameter and p as the variable. The inverter (decoder) has
variable m and inputs n and p, and its transformation is m′ = n − p. The encoder’s
input to the delayer and the decoder is n, and the delayer’s to the decoder is its state p.

Problem. Start the transducer in the above example with n = 3 and verify the
coding–decoding operation.

Problem. Attempt to find examples of decoders in living organisms.

3.4 Compression

Shannon’s fundamental theorem for a noiseless channel proves that it is possible to
encode the output of an information source in such a way as to transmit at an average
rate equal to the channel capacity.

This is of considerable importance in telephony, which mostly deals with the
transmission of natural language. Shannon found by an empirical method that the
redundancy of the English language (due to syntactical constraint) is about 0.5.
Hence, by suitably encoding the output of an English-speaking source, the capacity
of a channel may be effectively doubled.

This compression process is well illustrated by an example due to Shannon. Con-
sider a source producing a sequence of letters chosen from amongA,B, C, andD.Our

7Due to Ashby (1956).
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first guess would be that the four symbols were being chosen with equal probabilities
of 1

4 , and hence the average information rate per symbol would be log2 4 = 2 bits per
symbol. However, suppose that after a long delay we ascertain from the frequencies
that the probabilities are respectively 1

2 ,
1
4 ,

1
8 , and

1
8 . Then, from Eq. (2.5) we deter-

mine I = 1.75 bits per symbol, so we should be able to encode the message (whose
relative entropy is 7

8 and hence redundancy R is 1
8 ) such that a smaller channel will

suffice to send it. The following code may be used:8

↓ A B C D
0 10 110 111

.

The average number of binary digits used in encoding a sequence of N symbols will
be N ( 12 ×1+ 1

4 ×2+ 2
8 ×3) = 7

4 N . 0 and 1 can be seen to have equal probabilities;
hence, I for the coded sequence is 1 bit/symbol, equivalent to 1.75 binary symbols
per original letter. The binary sequence can be decoded by the transformation

↓ 00 01 10 11
A′ B′ C′ D′

The compression ratio of this process is 7
8 . Note, however, that there is no general

method for finding the optimal coding.

Problem. Using the above coding, show that the 16-letter message “ABBAAAD-
ABACCDAAB” can be sent using only 14 letters.

The Shannon technique requires a long delay between receiving symbols for
encoding and the actual encoding, in order to accumulate sufficiently accurate indi-
vidual symbol transmission probabilities. The entire message is then encoded. This
is, of course, a highly impractical procedure.Mandelbrot (1952) has devised a proce-
dure whereby messages are encoded word by word. In this case the word delimiters
(e.g., spaces in English text) play a crucial rôle. From Shannon’s viewpoint, such a
code is necessarily redundant, but on the other hand, an error in a single word renders
only that word unintelligible, not the whole message. It also avoids the necessity for
a long delay before coding can begin.

The Mandelbrot coding scheme has interesting statistical properties. One may
presume that the encoder seeks to minimize the cost of conveying a certain amount
of information using the collection of words that are at his disposal. If pi is the
probability of selecting and transmitting the i th word, then the mean information per
symbol contained in the message is, as before, −∑

pi log pi . We may suppose that
the cost of transmitting a selected word is proportional to its length. If ci is the cost of
transmitting the i th word, then the average cost per word is

∑
pi ci . Minimizing the

distribution of the probabilities while keeping the total information constant (using
Lagrange’s method of undetermined multipliers) yields

pi = Ce−Dci , (3.4)

8Elaborated by D.A. Huffman.

http://dx.doi.org/10.1007/978-1-4471-6702-0_2
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a sort of Boltzmann distribution.C is a constant fixed by the condition that
∑

pi = 1,
and D is an as yet undetermined constant.

Suppose that thewords aremade up of individual letters (symbols) and demarcated
by a special word demarcation symbol (the space in many languages). Cost, length,
and number of letters are all proportional to each other. If the letters can be chosen in
any way from an alphabet of A different ones, by the multiplication rule (Sect. 4.2.1)
there are An different n-letter words. Let these words now be ranked in order of
increasing cost and call this rank r . Since the cost increases linearly with n, it only
increases logarithmically with rank,9 that is,

cr = logA r . (3.5)

Substituting Eq. (3.5) into (3.4), one obtains a power law relation

pr = Cr−B , (3.6)

known as Zipf’s law when B = 1. Mandelbrot has shown that, more precisely,
Eq. (3.6) is

pr = C(r + ρ)−B (3.7)

and that the constant B (subsuming D in Eq.3.4), the reciprocal of the informational
temperature θ of the distribution (by analogy with the thermodynamic case), can take
values other than 1. For B > 1 (i.e., θ < 1) the language is called open (because the
value ofC does not greatly depend on the total number of words), whereas for B < 1
it does, and the corresponding language is called closed. The constant ρ is connected
with the freedom of choosing words (cf. Sect. 4.2.3), but a deep interpretation of its
significance in messages has not yet been given. Equation (3.7) fits the distribution
of written texts remarkably well, and most languages such as English, German,
and so forth are open, whereas highly stylized languages (e.g., modern Hebrew and
the English of the Pennsylvania Dutch) are closed. θ is a measure of the agility of
exploiting vocabulary; lowvalues are characteristic of children learning a language or
schizophrenic adults; the richest andmost imaginative use of vocabulary corresponds
to θ = 1.

There are many heuristic methods for compression. Dictionaries (i.e., lists of
frequent words) are often used for word texts. In rastered images, successive lines
typically show small changes; large blocks are uniformly black, grey or white, and so
on. A useful way of compressing long sequences of symbols is to search for segments
that are duplicated. The duplicates can then be encoded by the distance of the match
from the original sequence and the length of the matching sequence (number of
symbols). Zipping software typically works on this principle;10 the compression is
greatest for files with a lot of repetitive material, but according to van der Waerden’s
(1927) extension of Baudet’s conjecture, any string of two kinds of symbols has
repetitive sequences of at least one of the symbols.

9The words are listed in order of increasing cost; rank 1 has the lowest cost and so on.
10e.g., Ziv and Lempel (1977).

http://dx.doi.org/10.1007/978-1-4471-6702-0_4
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3.4.1 Use of Compression toMeasure Distance

Suppose two ergodic binary sources P and Q emit 1 s with probabilities p and
q , respectively. The Kullback and Leibler (1951) relative entropy between the two
strings is

SP Q = −q log2
p

q
− (1 − q) log2

1 − p

1 − q
(3.8)

and may be used as the basis of a measure of distance between the two strings.
Benedetto et al. (2002) have devised an ingenious method for estimating SP Q from
two sources by zipping a long string from each source (P and Q) and the same long
strings to each of which is appended a sufficiently short string fragment (say P ′) from
one of the sources. SP Q is then the difference in coding efficiency between P ′ coded
optimally because it follows P (the source is ergodic) and P ′ coded suboptimally
because it follows Q. Using L to denote the length of a zipped file,

SP Q = [(L Q+P ′ − L Q) − (L P+P ′ − L P )]/L ′
P ′ (3.9)

(in bits per character), where L ′
P ′ is the unzipped length of the short string fragment

P ′. In order to eliminate dependency on the particular coding, a different normaliza-
tion may be used:

SP Q = (L Q+P ′ − L Q) − (L P+P ′ − L P )

L P+P ′
+ (L P+Q′ − L P ) − (L Q+Q′ − L Q)

L Q+Q′
.

(3.10)

3.4.2 Ergodicity

Ergodicity means that every allowable point in phase space is visited infinitely often
in infinite time or, in practice, every allowable point in phase space is approached
arbitrarily closely after a long time. Ergodicity is a pillar of Boltzmann’s assumption
that the microstates of an ensemble have equal a priori probabilities, and indeed of
the rest of statistical mechanics. Nevertheless, as our knowledge of the world has
increased, it has become apparent that ergodicity actually applies only to a small
minority of natural systems. Although some systems may not even be ergodic in
the infinite time limit, most observed departures from ergodicity occur because of
the inordinately long times that would be required to fulfil it. The departures are
particularly common in condensed matter: any glass, for example, breaks ergodicity.
In nonergodic systems, the phase space or ensemble average does not equal the
time average.

A homely illustration of some of the issues to be considered, in particular that
breaking ergodicity depends on the timescale of the observer, is provided by a cup
of hot coffee to which cream is added and stirred. The coffee and cream become
homogeneously mixed within seconds, the cup and contents reach the temperature of
the surroundings after tens of minutes, and the water evaporates and is in equilibrium
with the atmosphere in the room after several hours.Whether the observed behaviour
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is representative of the allowed phase space depends on the observational timescale
τ0. In general, broken ergodicity can be expected if there are significant dynamical
timescales longer than τ0.

In amore general sense, applicable also to symbolic strings, ergodicmeans that any
one exemplar (substring) is typical of the ensemble; hence, if the string is ergodic,
it is to be expected that every permissible sequence will be encountered. Clearly,
therefore, the DNA of living organisms is not ergodic (although it might be argued
that hitherto we have taken a too liberal view of what is “permissible”).

3.5 Noise

So far we have supposed that the messages received over the communication chan-
nel are precisely those transmitted. This is a rather idealized situation. We have
doubtlessly had the experience of speaking on a very noisy telephone line, or listen-
ing to a radio with very poor reception, and only been able to make out one word
in two perhaps, and yet could still understand what was being said. The syntactical
redundancy of English is about 0.5; hence, it is not surprising that about half the
words or symbols may be removed (at random) without overly impairing our ability
to receive the original message.

According to our previous discussion of the Shannon index, I is additive for
independent sources of uncertainty. Noise is an independent source of uncertainty
and can be treated within the theoretical framework we have discussed.

Suppose that signal x was sent and y was received, the difference between the
two being due to noise. The amount of information lost in transmission is called the
equivocation, E .

Definition. The equivocation is

E = I (x) − I (y) + Ix (y) , (3.11)

where I (x) is the information sent, I (y) is the information received, and Ix (y) is
the uncertainty in what was received if the signal sent be known.11

The concept of equivocation enables one to write the actual rate of information
transmission R over a noisy channel in a rather transparent way:

R = I (x) − E ; (3.12)

that is, the rate equals the rate of transmission of the original signal minus the uncer-
tainty in what was sent when the message received is known. From our definition
(3.11),

R = I (y) − Ix (y) , (3.13)

11It should be clear that the information sent is already the result of some measurement operation
or whatever, in the sense of our previous discussion.

http://dx.doi.org/10.1007/978-1-4471-6702-0_3
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where Ix (y) is the spurious part of the information received (i.e., the part due to noise)
or, equivalently, the average uncertainty in a message received when the signal sent
is known. It follows (cf. Sect. 4.1) that

R = I (x) + I (y) − I (x, y) , (3.14)

where I (x, y) is the joint entropy of input (information transmitted) and output
(information received). By symmetry, the joint entropy equals

I (x, y) = I (x) − Ix (y) = I (y) − Iy(x) . (3.15)

We could just as well write E as Iy(x): it is the uncertainty in what was sent when
it is known what was received. If there is no noise, I (y) = I (x) and E = 0.

Let the error rate be η per symbol. Then

E = Iy(x) = η log η + (1 − η) log(1 − η) . (3.16)

The maximum error rate is 0.5 for a binary transmission; the equivocation is then 1
bit/symbol and the rate of information transmission is zero.

The equivocation is just the conditional or relative entropy and can also be derived
using conditional probabilities. Let p(i) be the probability of the i th symbol being
transmitted and let p( j) be the probability of the j th symbol being received. p( j |i)
is the conditional probability of the j th signal being received when the i th was
transmitted, p(i | j) is the conditional probability of the i th signal being transmitted
when the j th was received (posterior probability), and p(i, j) is the joint probability
of the i th signal being transmitted and the j th received.

The ignorance removed by the arrival of one symbol is (cf. Eq.2.7)

I = initial uncertainty − final uncertainty

= log p(i) − (− log p( j))

= log
p(i | j)

p(i)
. (3.17)

Averaging over all i and j ,

Ī =
∑

i

∑

j

p(i, j) log
p(i | j)

p(i)
, (3.18)

but since p(i, j) = p(i)p( j |i) = p( j)p(i | j) (cf. Sect. 5.2.2),

Ī =
∑

i

∑

j

p(i, j) log
p(i, j)

p(i)p( j)
. (3.19)

If i = j always, then we recover the Shannon index (Eq.2.5). If the two are statisti-
cally independent, Ī = 0.

From our definition of p(i, j) we can write the posterior probability as

p(i, j) = p(i)

p( j)
p( j, i) . (3.20)

Shannon’s fundamental theorem for a discrete channel with noise proves that if
the channel capacity is C and the source transmission rate isR, then ifR ≤ C, there

http://dx.doi.org/10.1007/978-1-4471-6702-0_4
http://dx.doi.org/10.1007/978-1-4471-6702-0_2
http://dx.doi.org/10.1007/978-1-4471-6702-0_5
http://dx.doi.org/10.1007/978-1-4471-6702-0_2
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exists a coding system such that the source output can be transmitted through the
channel with an arbitrarily small frequency of errors. The capacity of a noisy channel
is defined as

Cnoisy = max(I (x) − E) , (3.21)

the maximization being over all sources that might be used as input to the channel.

3.6 Error Correction

Suppose a binary transmission channel had a 20%chance of transmitting an incorrect
signal; hence, a message sent as “0110101110” might appear as “1100101110”.
An easy way to render the system immune from such noise would be to repeat
each signal threefold and incorporate a majority detector in the receiver. Hence,
the signal would be sent as “000111111000111000111111111000” and received
as “001011011000110000101111111100” (say), but majority detection would still
enable the signal to be correctly restored. The penalty, of course, is that the channel
capacity is reduced to a third of its previous value.

Many physical devices are so designed to be immune, to a certain degree, to
random fluctuations in the physical quantities encoding information. In a digital
device, zero voltage applied to a terminal represents the digit “0”, and 1 V (say)
represents the digit “1”. In practice, any voltage up to about 0.5 will be interpreted
as zero, and all voltages above 0.5 will be interpreted as 1.0 (see Fig. 3.3).

It is perfectly possible to devise codes that can detect and correct errors. Hamming
defines systematic codes as those in which each code symbol has exactly n binary
digits, m being associated with the information being conveyed and k = n −m being
used for error detection and correction. The redundancy (cf. Eq.2.18) of a systematic
code (s.c.) is defined as

Rs.c. = n/m . (3.22)

Hamming (1950) constructed a single error-detecting code as follows: Information
is placed in the first n − 1 positions of n binary digits. Either a 0 or a 1 is placed
in the nth position, the choice being made to ensure an even number of 1 s in the n

Fig. 3.3 Input–output
relationships for a device
such as an electromechanical
relay (solid line) and a field-
effect transistor (dashed line)

http://dx.doi.org/10.1007/978-1-4471-6702-0_2
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digit word. A single (or odd number of) error would leave an odd number of 1s in
the word. Clearly, the redundancy is n/(n − 1). This type of error-detecting code is
called a parity check; this particular one is an even parity check. n should be small
enough such that the probability of more than one error is negligible.

Tomake an error-correcting code, a larger number (k > 1) of positions are given to
parity checking and filled with values appropriate to selected information positions.
When themessage is received, k checks are applied in order, and if the observed value
agrees with the previously calculated value, one writes a 0, but a 1 if it disagrees, in a
new number called the checking number, which must give the position of any single
error—i.e., it must describe m + k + 1 different things—hence, k must satisfy

m + k + 1 ≤ 2k ≤ 2n/(n + 1) . (3.23)

The principle can obviously be extended to double error-correcting codes, which, of
course, further increase the redundancy.12

3.7 Summary

Messages may be encoded in order to send them along a communication channel.
Shannon’s fundamental theorem proves that a message with redundancy can always
be encoded to take advantage of it, enabling a channel to transmit information up to
its maximum capacity.

The capacity of a channel is the number of symbols m that can be transmitted in
unit time multiplied by the average information per symbol:

C = m Ī . (3.24)

Any strategy for compressing a message is actually a search for regularities in the
message, and thus compression of transmitted information actually lies at the heart
of general scientific endeavour.

Noise added to a transmission introduces equivocation, but it is possible to transmit
information through a noisy channel with an arbitrarily small probability of error,
at the cost of lowering the channel capacity. This introduces redundancy, defined as
the quotient of the actual number of bits to the minimum number of bits necessary
to convey the information. Redundancy therefore opposes equivocation; that is, it
enables noise to beovercome.Manynatural languages have considerable redundancy.
Technical redundancy arises through syntactical constraints. The degree of semantic
redundancy of English, or indeed of any other language, is currently unknown.

Problem. Attempt to define, operationally or otherwise, the terms “message”, “mes-
sage content”, and “message structure”.

12See also Levenshtein (2001) on the problem of efficient reconstruction of an unknown sequence
from versions distorted by noise.
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Problem. Calculate the amount of information in a string of DNA coding for a
protein. Repeat for the corresponding messenger RNA and amino acid sequences. Is
the latter the same as the information contained in the final folded protein molecule?

Problem. Discuss approaches to the problem of determining the minimum quantity
of information necessary to encode the specification of an organ.

Problem. Is it useful to have a special term “bioinformation”? What would its
attributes be?
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4Sets andCombinatorics

4.1 The Notion of Set

Set is a fundamental, abstract notion. A set is defined as a collection of objects, which
are called the elements or points of the set. The notions of union (A∪ B, where A and
B are each sets), intersection (A ∩ B), and complement (Ac) correspond to everyday
usage. Thus, if A = {a, b} and B = {b, c}, A ∪ B = {a, b, c}, A ∩ B = {b}, and
Ac = {c, d, . . . , z} if our world is the English alphabet. Functions can be thought of
as operations that map one set onto another.

Typically, all the elements of a set are of the same type; for example, a set called
“apples” may contain apples of many different varieties, differing in their colours
and sizes, but no oranges or mangoes; a set called “fruit” could, however, contain all
of these, but no meat or cheese.

One is often presented with the problem of finding or estimating the size of a
set. Size is the most basic attribute, even more basic than the types of elements.
If the set is small, the elements can be counted directly, but this quickly becomes
tedious and, as the set becomes large, it may be unnecessary to know the exact size.
Hence, computational short cuts have been developed, which are usually labelled
combinatorics. Combinatorial problems are often solved by looking at them in just
the right way and, at an advanced level, problems tend to be solved by clever tricks
rather than the application of general principles.

Problem. Draw Venn diagrams corresponding to ∩, ∪ and complement.

4.2 Combinatorics

Most counting problems can be cast in the form of making selections, of which there
are four basic types, corresponding to with or without replacement, each with or
without ordering. This is equivalent to assembling a collection of balls by taking
them from boxes containing different kinds of balls.

© Springer-Verlag London 2015
J. Ramsden, Bioinformatics, Computational Biology 21,
DOI 10.1007/978-1-4471-6702-0_4
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The Basic Rule of Multiplication

Consider an ordered r -tuple (a1, . . . , ar ), in which each member ai belongs to a
set with ni elements. The total number of possible selections equals n1n2 · · · nr ; for
example, we select r balls, one from each of r boxes, where the i th box contains ni

different balls.

4.2.1 Ordered Sampling with Replacement

If all the sets fromwhich successive selections are taken are the same size n, the total
number of ordered (distinguishable) selections of r objects from n with repetition
(replacement) allowed follows from the multiplication rule

r∏

i

ni = nr . (4.1)

In terms of putting balls in a row of cells, this is equivalent to filling r consecutive
cells with n possible choices of balls for each one; after taking a ball from a central
reservoir, it is replenished with an identical ball.

4.2.2 Ordered SamplingWithout Replacement

If the balls are not replenished after removal, there are only (n−1) choices of ball for
filling the second cell, (n − 2) for the third, and so on. If the number of cells equals
the number of balls (i.e., r = n), then there are n! different arrangements—this is
called a permutation (and can be thought of as a bijective mapping of a set onto
itself); more generally, if r ≤ n, the number of arrangements is

n Pr = n(n − 1) · · · (n − r + 1) = n!
(n − r)! , (4.2)

remembering that 0! is defined as being equal to 1.

Random Choice

This means that all choices are equally probable. For random samples of fixed size,
all possible samples have the same probability n−r with replacement and 1/n Pr

without replacement. The probability of no repetition in a sample is therefore given
by the ratio of these probabilities: n Pr/nr . Criteria for randomness are dealt with in
detail in Chap.6.

Stirling’s Formula

This is useful for (remarkably accurate) approximations to n!:
n! ∼ (2π)

1
2 n(n+ 1

2 )e−n . (4.3)

A simpler, less accurate, but easier to remember formula is

log n! ∼ n log n − n . (4.4)

http://dx.doi.org/10.1007/978-1-4471-6702-0_6
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4.2.3 Unordered SamplingWithout Replacement

Suppose now that we repeat the operation carried out in the previous subsection, but
without regard to the order; that is, we simply select r elements from a total of n. Let
W be the number of ways in which it can be done. After having made the selection,
we then order the elements, to arrive at the result of the previous subsection; that is,
each selection can be permuted in r ! different ways. These two operations give us
the following equation:

n!
(n − r)! = Wr ! (4.5)

The expression for W , the number of combinations of r objects out of n, which we
shall now write as nCr or

(n
r

)
, follows immediately:

nCr =
(

n

r

)
= n!

r !(n − r)! , (4.6)

with
(n
0

) = 1 from the definition of 0! = 1. This is equivalent to stating that a
population of n elements has

(n
r

)
different subpopulations of size r ≤ n. Note that

(
n

r

)
=

(
n

n − r

)
for r = 0, 1, ..., n ; (4.7)

in words, for example, selecting five objects out of nine is the same as selecting four
to be omitted.

It is implied that the selections are independent. In practical problems, this may
be far from reality. For example, a manufacturer assembling engines from 500 parts
may have to choose from a total of 9000. The number of combinations is at first
sight a huge number, 9000!/(500! 8500!) ∼ 10840 by Stirling’s approximation, pos-
ing a horrendous logistics problem. Yet many of the choices will fix others; strong
constraints drastically reduce the freedom of choice of the components.

Partitioning

The number ofways inwhich n elements can be partitioned into k subpopulations, the
first containing r1 elements, the second r2, and so on, where r1+r2+· · ·+rk = n, is
given bymultinomial coefficients n!/(r1!r2! · · · rk !), obtained by repeated application
of Eq. (4.6). If r balls are placed in n cells with occupancy numbers r1, r2, . . . , rn ,
with all nr possible placements equally possible, then the probability to obtain a set
of given occupancy numbers equals n−r n!/(r1!r2! . . . rk !) (the Maxwell-Boltzmann
distribution). This multinomial coefficient will be denoted using square brackets:

[
r

ri

]
= n!

r1!r2! · · · rk ! , with
i=k∑

i

ri = n . (4.8)

Fermi-Dirac Statistics

Fermi-Dirac statistics are based on the following hypotheses: (i) No more than one
element can be in any given cell (hence r ≤ n) and (ii) all distinguishable arrange-
ments satisfying (i) have equal probabilities.



52 4 Sets and Combinatorics

By virtue of (i), an arrangement is completely specified by stating which of the n
cells contain an element; since there are r elements, the filled cells can be chosen in(n

r

)
ways, each with probability

(n
r

)−1.

Bose-Einstein Statistics

Let the occupancy numbers of the cells be given by

r1 + r2 + · · · + rn = r . (4.9)

The number of distinguishable distributions (if the elements are indistinguishable,
distributions are distinguishable only if the corresponding n-tuples (r1, . . . , rn) are
not identical) is the number of different solutions of Eq. (4.9).We call this Ar,n (given
by Eq.4.11) and each solution has the probability A−1

r,n of occurring.

Problem. Consider a sequence of two kinds of elements: a alphas, numbered 1 to
a, and b betas numbered a + 1 to a + b. Show that the alphas and betas can be
arranged in exactly

(a + b)!
a!b! =

(
a + b

a

)
=

(
a + b

b

)

distinguishable ways.

4.2.4 Unordered Sampling with Replacement

This last of the four basic selection possibilities is exemplified by throwing r dice
(i.e., placing r balls into n = 6 cells). The event is completely described by the
occupancy numbers of the cells; for example, 3, 1, 0, 0, 0, 4 represents three 1s, one
2, and four 6s.

Generalizing, every n-tuple of integers satisfying

r1 + r2 + · · · + rn = r (4.10)

describes a possible configuration of occupancy numbers. Let the n cells be repre-
sented by the n spaces between n+1 bars. Let each object in a cell be represented by a
star (for the example given above, the representation would be | ∗∗∗ | ∗ |||| ∗∗∗∗ |).
The sequence of stars and bars starts and ends with a bar, but the remaining n−1 bars
and the r elements placed in the cells can appear in any order. Hence, the number
of distinguishable distributions Ar,n equals the number of ways of selecting r places
out of n − 1 + r symbols. From Eq. (4.6) this is

Ar,n =
(

n − 1 + r

r

)
=

(
n − 1 + r

n − 1

)
. (4.11)

If we impose a condition that no cell be empty, the r stars leave r − 1 spaces, of
which n − 1 are to be occupied by bars; hence, there are

(r−1
n−1

)
choices.

Problem. How many different DNA hexamers are there? How many different
hexapeptides are there?



4.2 Combinatorics 53

Problem. Estimate the fraction of actual DNA sequences (i.e., the genomes of
known species) comparedwith all possibleDNA sequences. Clearly state all assump-
tions.

4.3 The Binomial Theorem

Newton’s binomial formula,

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k , (4.12)

where a and b can also be compound expressions, can be derived by combinatorial
reasoning; for example, (a + b)5 = (a + b)(a + b)(a + b)(a + b)(a + b), and to
generate the terms, an a or b is chosen from each of the five factors.

Problem. Generalize the binomial theorem by replacing the binomial a + b by a
multinomial a1 + a2 + · · · + ar .
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5.1 The Notion of Probability

In everyday speech, statements such as “probably the train will be late” or “probably
it will be foggy tomorrow” have the character of judgements. Formally, however
(i.e., in the sense used throughout this book), probabilities do not refer to judgments,
but to possible results (outcomes) of an experiment. These outcomes constitute the
“sample space”.1 For example, attributing a probability of 0.6 to an event means that
the event is expected to occur 60 times out of 100. This is the “frequentist” concept
of probability, based on random choices from a defined population.

The frequentist concept is sometimes called the “objective” school of thought:
The probability of an event is regarded as an objective property of the event (which
has occurred), measurable via the frequency ratios in an actual experiment. Histor-
ically, it has been opposed by the “subjective” school,2 which regards probabilities
as expressions of human ignorance; the probability of an event merely formalizes
the feeling that an event will occur, based on whatever information is available.3 The
purpose of theory is then merely to help in reaching a plausible conclusion when
there is not enough information to enable a certain conclusion to be reached. A pil-
lar of this school is Laplace’s Principle of Insufficient Reason: Two events are to
be assigned equal probabilities if there is no reason to think otherwise. Under such
circumstances, if information were really lacking, the objectivist would refrain from
attempting to assign a probability.

These differing schools have a bearing on the whole concept of causality, and it
may be useful to recall here some remarks ofMax Planck (1932).4 One starts with the

1Called Merkmalraum (“label space”) in R. von Mises’ (1931) treatise Wahrscheinlichkeitsrech-
nung.
2Its protagonists include Laplace, Keynes, and Jeffreys.
3According to J.M. Keynes, probability is to be regarded as “the degree of our rational belief in a
proposition”.
4Made during the 17th Guthrie Lecture to the Physical Society in London.

© Springer-Verlag London 2015
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56 5 Probability and Likelihood

proposition that a necessary condition for an event to be causally conditioned is that
it can be predicted with certainty. If, however, we compare a prediction of a physical
phenomenonwithmore andmore accuratemeasurements of that phenomenon, one is
forced to reach a remarkable conclusion—that in not a single instance is it possible
to predict a physical event exactly, unlike a purely mathematical calculation. The
“indeterminists” interpret this state of affairs by abandoning strict causality and
asserting that every physical law is of a statistical nature. The opposing school of
“determinists” asserts that the laws of nature apply to an idealized world-picture,
in which phenomena are represented by precise mathematical symbols, which can
be operated on according to strict and generally agreed rules and to which precise
numbers can be assigned (to which an actual measurement can only approximate);
in the corresponding mentally constructed world-picture, all events follow definable
laws and are strictly determined causally; the uncertainty in the prediction of an event
in the world of sense is due to the uncertainty in the translation of the event from the
world of sense to the world-picture and vice versa. It is left to the interested reader
to pursue the implications with respect to quantum mechanics (with which we will
not be explicitly concerned in this book).

Sommerhoff (1950) formulated probability in the following terms: Given a system
whose initial state can be one of a set Q of n alternatives Q1, Q2, . . . , Qn , of which
a certain fraction m/n will lead to the subsequent occurrence of an event E that
is to be expected in the normal development of the system, then the probability
that any particular member of Q leads to E is given by the fraction m/n. Note that
this formulation only applies to the effects of the initial states, not to the states
themselves. It has the advantage of avoiding any assumption of equally probable, or
equally uncertain, events.

Before any further discussion about probability can take place, it is essential to
agree on what is meant by the possible results from an experiment (or observa-
tion). These results are called “events”. Very often abstract models, corresponding
to idealized events, are constructed to assist in the analysis of a phenomenon.

5.2 Fundamentals

The elementary unit in probability theory is the event. One has a fair freedom to define
the event; simple events are irreducible and compound events are combinations of
simple events. For example, the throw of a die to produce a 5 (with probability 1/6)
is a simple event, and combinations of events to yield the same final result, such as
three 2s, or a 5 and a 1, are compound events. Implicitly, the level of description
is fixed when speaking of events in this way; clearly, the “event” of throwing a 6
requires many “sub-events” (which are events in their own right) involving muscular
movements and nervous impulses, but these take place on a different level.
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The general approach to solving a problem requiring probability is as follows:

1. Choose a set to represent the possible outcomes;
2. Allocate probabilities to these possible outcomes.

The results of probability theory can be derived from three basic axioms, referring to
events and their totality in amanner that wemust take to be carefully circumscribed:5

P{E} ≥ 0 for every event E , (5.1)

P{S} = 1 for the certain event S , (5.2)

P{A} =
∑

i

P{ai } . (5.3)

S includes all possible outcomes. Hence, if E and F are mutually exclusive events,
the probability of their joint occurrence (corresponding to the AND relation in logic;
i.e., “E and F”) is simply the sum of their probabilities:

P{E ∪ F} = P{E} + P{F} . (5.4)

Simple events are by definition mutually exclusive (P{E} ∩ P{F} = 0), but
compound events may include some simple events that belong to other compound
events and, more generally (inclusive OR; i.e., “E or F or both”),

P{E ∪ F} = P{E} + P{F} − P{E F} . (5.5)

If events are independent, then the probability of occurrence of those portions shared
by both is

P{E ∩ F} = P{E F} = P{E}P{F} . (5.6)

It follows that for equally likely outcomes (such as the possible results from throwing
a die or selecting from a pack of cards), the probabilities of compound events are
proportional to the numbers of equally probable simple events that they contain:

P{A} = N {A}
N {S} . (5.7)

We used this result at the beginning of this section to deduce that the probability of
obtaining a 5 from the throw of a die is 1/6.

Problem. Prove Eqs. (5.4) and (5.5) with the help of Venn diagrams.

5Notation: in this chapter, P{X} denotes the probability of event X ; N {X} is the number of simple
events in (compound) event X . S denotes the certain event that contains all possible events. Sample
space and events are primitive (undefined) notions (cf. line and point in geometry).
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5.2.1 Generalized Union

The event that at least one of N events A1, A2, . . . , AN occurs (i.e., A = A1 ∪
A2 ∪ · · · ∪ AN ) needs information not only about the individual events but about all
possible overlaps.

Theorem. The probability P1 of the realization of at least one among the events
A1, A2, . . . , AN is given by

P1 = S1 − S2 + S3 − S4 + · · · ± SN , (5.8)

where the Sr are defined as the sums of all probabilities with r subscripts (e.g.,
S1 = ∑

pi , S2 = ∑
pi j , and i < j < k < · · · ≤ N ) so that each contribution

appears only once; hence, each sum Sr has
(N

r

)
terms, and the last term SN gives the

probability of the simultaneous realization of all terms.6

This result can be used to solve an old problem. Consider two sequences of N
unique symbols differing only in the order of occurrence of the symbols and which
are then compared, symbol by symbol.What is the probability P1 that there is at least
one match? Let Ak be the event that a match occurs at the kth position. Therefore,
symbol number k is at the kth place, and the remaining N − 1 are anywhere; hence,

pk = (N − 1)!
N ! = 1

N
,

and for every combination i, j ,

pi j = (N − 2)!
N ! = 1

N (N − 1)
.

Each term in Sr in Eq. (5.8) equals (N − r)!/N ! and therefore 1/r !; therefore,
P1 = 1 − 1

2! + 1

3! − + · · · ± 1

N ! . (5.9)

One might recognize that 1− P1 represents the first N + 1 terms in the expansion of
1/e; hence, P1 ≈ 1−1/e ≈ 0.632. It seems rather remarkable that P1 is independent
of N . For problemsofmatchinggenes and the like it is useful to consider an extension,
that for any integer 1 ≤ m ≤ N the probability P[m] that exactly m among the N
events A1, . . . , AN occur simultaneously is6

P[m] = Sm −
(

m + 1

m

)
Sm+1 +

(
m + 2

m

)
Sm+2 − + · · · ±

(
N

m

)
SN (5.10)

6The proof is given in Feller (1967), Chap.4.
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and

P[0] = 1 − P1 = 1 − 1 + 1

2! − 1

3! + − · · · ± 1

(N − 2)! ∓ 1

(N − 1)! ± 1

N !
P[1] = 1 − 1 + 1

2! − 1

3! + − · · · ± 1

(N − 2)! ∓ 1

(N − 1)!
P[2] = 1

2!
[
1 − 1 + 1

2! − 1

3! + − · · · ± 1

(N − 3)! ∓ 1

(N − 2)
!
]

...

P[N−1] = 1

(N − 1)! {1 − 1} = 0

P[N ] = 1

N ! .
Noticing again the similarity with the expansion of 1/e, for large N ,

P[m] ≈ e−1

m! (5.11)

(i.e., a special case of the Poisson distribution with λ = 1). The probability Pm that
m or more of the events A1, . . . , AN occur simultaneously is

Pm = P[m] + P[m+1] + · · · + P[N ]. (5.12)

Starting with Eq. (5.9) and noting that

P[m+1] = Pm − P[m] , (5.13)

by induction, for m ≥ 1,

P[m] = Sm −
(

m

m − 1

)
Sm+1 +

(
m + 1

m − 1

)
Sm+2

−
(

m + 2

m − 1

)
Sm+3 + · · · ±

(
N − 1

m − 1

)
SN . (5.14)

5.2.2 Conditional Probability

The notion of conditional probability is of great importance.7 It refers to questions
of the type “what is the probability of event A, given that H has occurred?” We use
the notation P{A|H} (read as “the conditional probability of A on hypothesis H” or
“the conditional probability of A for a given event H”) and

P{A|H} = P{AH}
P{H} . (5.15)

7Indeed, Reichenbach, Popper, and others have taken the view that conditional probability may and
should be chosen as the basic concept of probability theory. We should in any case note that most
of the results derived for unconditional probabilities are also valid for conditional probabilities.
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This result can be derived by noting that we are asking “to what extent is H contained
in A?” which means “to what extent are H and A likely to occur simultaneously?”
In set notation, this is P{A ∩ H} = P{H ∩ A}. Therefore, P{A|H} = k P{A ∩ H},
where k is a constant. If A = H , then P{H |H} = k P{H ∩ H} = k P{H} = 1;
hence, k = 1/P{H} and we obtain

P{A|H} = P{A ∩ H}
P{H} (5.16)

(i.e., Eq. 5.15). If all sample points have equal probabilities, then

P{A|H} = N {AH}
N {H} , (5.17)

where N {AH} is the number of sample points common to A and H .
From this comes a theorem, due to Bayes, of great importance and widely referred

to, which gives the probability that the event A, which has occurred, is the result of
the cause Ek :

P{Ek |A} = P{A|Ek}P{Ek}∑n
j=1 P{A|E j }P{E j } for k = 1, . . . , n , (5.18)

where the E j are mutually exclusive hypotheses.

Proof. Let the simple events Ei be labelled such that

A = E1 ∪ E2 ∪ · · · ∪ Em , 1 ≤ m ≤ n . (5.19)

Then

P{A} =
m∑

j=1

P{E j } . (5.20)

From the definition (5.15),
n∑

j=1

P{A|E j }P{E j } =
n∑

j=1

P{A ∩ E j } , (5.21)

which can be equated to the right-hand side of (5.20)
n∑

j=1

P{A ∩ E j } =
m∑

j=1

P{E j } = P{A} . (5.22)

This result can be used towrite the denominator of the right-hand side of Eq. (5.18) as
P{A|Ek}P{Ek}/P{A}, but this, according to Eq. (5.16) and after cancelling equals
P{A ∩ Ek}/P{A} = P{Ek ∩ A}/P{A}, which, again using Eq. (5.16), equals
P{Ek |A}. �
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5.2.3 Bernoulli Trials

Bernoulli trials are defined as repeated, (stochastically) independent trials8 (hence,
probabilities multiply) with only two possible outcomes per trial—success (s) or
failure (f)—with respective constant (throughout the sequence of trials) probabilities
p and q = 1 − p. The sample space of each trial is {s, f}, and the sample space
of n trials contains 2n points. The event “k successes, with k = 0, 1, . . . , n, and
n − k failures in n trials” can occur in as many ways as k letters can be distributed
among n places (the order of successes and failures does not matter), and each of
the nCk = (n

k

)
points has probability pkqn−k . Hence, the probability of exactly k

successes in n trials is

b(k; n, p) =
(

n

k

)
pkqn−k . (5.24)

This function is known as the binomial distribution because the terms are those of
the expansion of (a + b)n (cf. Sect. 4.3).

Bernoulli trials are easily generalized tomore than twooutcomes. If the probability
of realizing an outcome Ei is pi (i = 1, 2, . . . , r) subject only to the condition

p1 + p2 + · · · + pr = 1 , (5.25)

then the probability that in n trials, E1 occurs k1 times, E2 occurs k2 times, and so
on is

n!
k1!k2! · · · kr ! pk1

1 pk2
2 · · · pkr

r , (5.26)

where
k1 + k2 + · · · + kr = n . (5.27)

The reader can readily verify that a plot of b versus k is a hump whose central
term occurs at m = [(n + 1)p], where the notation [x] signifies “the largest integer
not exceeding x”.

An important practical case arises where n is large and p is small, such that the
product np = λ is of moderate size (∼1). The distribution can then be simplified:

b(k; n, p) =
(

n

k

)
λ

n

k (
1 − λ

n

)n−k

= λk

k!
(
1 − λ

n

)n−k n(n − 1) · · · (n − k + 1)

nk
.

Now, (1 − λ/n)n−k ≈ e−λ and n(n − 1) . . . (n − k + 1)/nk ≈ 1; hence,

b(k; n, p) ≈ λk

k! e−λ = p(k; λ) , (5.28)

8Stochastic independence is formally defined via the condition

P{AH} = P{A}P{H} , (5.23)

which must hold if the two events A and H are stochastically (sometimes called statistically)
independent.

http://dx.doi.org/10.1007/978-1-4471-6702-0_4


62 5 Probability and Likelihood

which is called the Poisson approximation to the binomial distribution. However, if
λ is fixed, then

∑
p(k; λ) = 1; hence, p(k;λ), the probability of exactly k successes

occurring, is a distribution in its own right, called the Poisson distribution. It is of
great importance in nature, describing processes lacking memory.

The probability f (k; r, p) that exactly k failures precede the r th success (i.e.,
exactly k failures among r + k − 1 trials followed by success) is

f (k; r, p) =
(

r + k − 1

k

)
pr qk =

(−r

k

)
pr (−q)k, k = 0, 1, 2, . . . . (5.29)

Iff9 ∞∑

k=0

f (k; r, p) = 1 , (5.30)

the possibility that an infinite sequence of trials produces fewer than r successes can
be discounted, since by the binomial theorem

∞∑

k=0

(−r

k

)
(−q)k = p−r , (5.31)

which equals 1 whenmultiplied by pr . The sequence f (k; r, p) is called the negative
binomial distribution.

Example. Suppose that the normal rate of infection of a certain disease in cattle is
25%.10 An experimental vaccine is injected into n animals. If it is wholly ineffectual,
the probability that exactly k animals remain free from infection is b(k; n, 0.75); for
k = n = 10, this probability is approximately 0.056; the probability that 1 animal
out of 17 becomes infected is slightly lower, approximately 0.050, and for 2 out of
23, it is lower still, approximately 0.049. This example highlights the difficulties
of drawing inferences from small samples. Two failures out of 23 is slightly better
evidence in favour of the vaccine than no failures out of 10.

5.3 Moments of Distributions

A random variable is “a function defined on a sample space” (e.g., the number
of successes in n Bernoulli trials). A unique rule associates a number X with any
sample point. The aggregate of all sample points on which X assumes the fixed
value x j forms the event that X = x j , with probability P{X = x j }.11 The func-
tion f (x j ) = P{X = x j } is called the (probability) distribution of the random

9If and only if.
10Due to P.V. Sukhatme and V.G. Panse, quoted by Feller (1967), Chap.6.
11X may assume the values x1, x2, . . . (i.e., the range of X).
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variable X.12 Joint distributions are defined for two or more variables defined on the
same sample space. For two variables, p(x j , yk) = P{X = x j ,Y = yk} is the joint
probability distribution of X and Y.

The mean, average, or expected value of X is defined by13

μX = E(X) =
∑

xk f (xk) (5.33)

provided that the series converges absolutely. The expectation of the sum (or product)
of random variables is the sum (or product) of their expectations. Proofs are left to
the reader.

Any function of X may be substituted for X in definition (5.33), with the same
proviso of series convergence. The expectations of the r th powers of X are called the
r th moments of X about the origin.14 Since |X|r−1 ≤ |X|r + 1, if the r th moment
exists, so do all the preceding ones. The expectation of the square of X’s deviation
from its mean value has a special name, the variance:15

σ2
X = Var(X) = E((X − E(X))2) = E(X2) − E(X)2 . (5.34)

Its positive square root σ is called the standard deviation of X, hinting at its use as a
rough measure of spread. The mean and variance (i.e., the first and second moments)
provide a convenient way to normalize (render dimensionless) a random variable,
namely

X∗ = X − μX

σX
. (5.35)

The covariance measures the linear association between variables X and Y and is
defined as

Cov(X,Y) = E(X − E(X))E(Y − E(Y)) = E(XY) − E(X)E(Y) (5.36)

(explicity, as (1/n)
∑n

j=1(x j − μX )(y j − μY )). It equals zero if the variables are
uncorrelated. If more than two variables are involved, it is convenient to arrange the
pairwise covariances in the so-called covariance matrix.

The scatter matrix S of n samples of m-dimensional data is defined as

S =
n∑

j=1

(X j − E(X))(X j − E(X))T . (5.37)

12The distribution function F(x) of X is defined by

F(x) = P{X ≤ x} =
∑

x j ≤x

f (x j ) (5.32)

(i.e., a nondecreasing function tending to 1 as x → ∞).
13Also denoted by angular brackets or a bar.
14Notice the mechanical analogies: centre of gravity as the mean of a mass and moment of inertia
as its variance.
15Older literature uses the term “dispersion”.
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If the variables are normally distributed, the (normalized) scatter matrix provides an
estimate of the covariance matrix.

Problem. Calculate the means and variances of the binomial and Poisson distribu-
tions.

5.3.1 Runs

Studies of the statistical properties of DNA and the like often start by stating the
total numbers of the four bases A, C, T, and G. This information entirely neglects
information on the order in which they occur. The theory of the distribution of runs
is one way of handling this information. A run is defined as a succession of similar
events preceded and succeeded by different events; the number of elements in a run
will be referred to as its length. The number of runs of course equals the number of
unlike neighbours.

Here, we shall only derive the distribution of runs of two kinds of elements. More
complicated results may be found by reference to Mood’s (1940) paper.

Let the two kinds of elements be a and b (they could be purines and pyrimidines),
and let there be n1 as and n2 bs, with n1 + n2 = n. r1i will denote the number of
runs of a of length i , with

∑
i r1i = r1, and so on. It follows that

∑
ir1i = n1, and

so on. Given a set of as and bs, the numbers of different arrangements of the runs
of a and b are given by multinomial coefficients and the total number of ways of
obtaining the set r ji ( j = 1, 2; i = 1, 2, . . . , n1) is

N (r ji ) =
[

r1
r1i

] [
r2
r2i

]
F(r1, r2) , (5.38)

where the special function F(r1, r2) is the number of ways of arranging r1 objects
of one kind and r2 objects of another so that no two adjacent objects are of the same
kind (see Table5.1).

Since there are
( n

n1

)
possible arrangements of the as and bs, the distribution of the

r ji is

P(r ji ) = N (r ji )F(r1, r2)( n
n1

) . (5.39)

Table 5.1 Values of the
function F(r1, r2)

r1 − r2 F(r1, r2)

>1 0

1 1

0 2
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5.3.2 The Hypergeometric Distribution

Continuing the notation of the previous subsection, consider choosing r elements at
random from the binary mixture of as and bs. What is the probability qk that the
group will contain exactly k as? It must necessarily contain r − k bs, and the two
types of elements can be chosen in

(n1
k

)
and

(n−n1
r−k

)
ways, respectively. Since any

choice of k as can be combined with any choice of r − k bs,

qk =
(n1

k

)(n−n1
r−k

)
(n

r

) . (5.40)

This system of probabilities is called the hypergeometric distribution (because the
generating function of qk is expressible in terms of hypergeometric functions). Many
combinatorial problems can be reduced to this form.

Problem. A protein consists of 300 amino acids, of which it is known that there are
2 cysteines. A 50-mer fragment has been prepared. What are the probabilities that
0, 1, or 2 cysteines are present in the fragment?

5.3.3 Multiplicative Processes

Many natural processes are random additive processes; for example, a displacement
is the sumof random steps (to the left or to the right in the case of the one-dimensional
random walk; cf. Chap.6). The probability distribution of the net displacement after
n steps is the binomial function. The central limit theorem guarantees that this dis-
tribution is Gaussian as n → ∞, a universal property of random additive processes.

Although their formalism is less familiar, random multiplicative processes (RMP)
are not less common in nature. An example is rock fragmentation. From an initial
value x0, the size of a rock undergoing fragmentation evolves as x0 → x1 → x2 →
· · · → xN . If the size reduction factor

rn = xn

xn−1
(5.41)

is less than 1, we have

xN = x0

N∏

k=1

rk . (5.42)

Extreme events, although exponentially rare, are exponentially different. Hence, the
average is dominated by rare events. This is quite different from the more intuitively
acceptable random additive process. If the phenomenon is of that type, the more
measurements one can take, the better the estimate of its value. However, if the
phenomenon is an RMP, as one increases the number of measurements, the estimate
of the mean will fluctuate more and more, before ultimately converging to a stable
value. Since multiplication is equivalent to adding logarithms, it is not surprising

http://dx.doi.org/10.1007/978-1-4471-6702-0_6
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that the distribution of the result of an RMP is lognormal (i.e., ln p = ∑
ln pi ), and

the average value (expectation) of p is

p̄ =
N∑

n=0

(Nn)pnq N−n . (5.43)

5.4 Likelihood

The search for regularities in nature has already been mentioned as the goal of
scientific work. Often, these regularities are framed in terms of hypotheses.16 With
hypotheses (whichmay eventually become theories), laws and relations acquiremore
than immediate validity and relevance (cf. unconditional information, Sect. 2.1.1).

In observing the natural world, one encounters “deterministic” events, character-
ized by rather clear relationships between the quantities measured compared with
the experimental uncertainties, and more uncertain events with statistical outcomes
(such as coin tossing or Mendelian gene segregation). The latter raise the general
problem of how to assess the relative merits of alternative hypotheses in the light
of the observed data. Statistics concerns itself with tests of significance and with
estimation (i.e., seeking acceptable values for the parameters of the distributions
specified by the hypotheses).

The method of support proposes that

posterior support = prior support + experimental support

and

information gained = log
posterior probability

prior probability
.

Two rival approaches to estimation have arisen: the theory of inverse probabil-
ity (due to Laplace), in which the probabilities of causes (i.e., the hypotheses) are
deduced from the frequencies of events, and themethod of likelihood (due to Fisher).
In the theory of inverse probability, these probabilities are interpreted as quantitative
and absolute measures of belief. Although it still has its adherents, the system of
inference based on inverse probability suffers from the weakness of supposing that
hypotheses are selected from a continuum of infinitely many hypotheses. The prior
probabilities have to be invented; for example, by imagining a chance setup, in which
case the model is a private one and violates the principle of public demonstrability.
Alternatively, one can apply Laplace’s “Principle of Insufficient Reason,” according

16Strictly speaking, one should instead refer to propositions. A hypothesis is an asserted proposition,
whereas at the beginning of an investigation it would be better to start with considered propositions,
to avoid prematurely asserting what one wishes to find out. Unfortunately, the use of the term
“hypothesis” seems to have become so well established that we may risk confusion if we avoid
using the word.

http://dx.doi.org/10.1007/978-1-4471-6702-0_2
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to which each hypothesis is given the same probability if there are no grounds to
believe otherwise. Conceptually, that viewpoint is rather hard to accept. Moreover, if
there are infinitely many equiprobable hypotheses, then each one has an infinitesimal
probability of being correct.

Bayes’ theorem (5.18) may be applied to the weighting of hypotheses if and
only if the model adopted includes a chance setup for the generation of hypotheses
with specific prior probabilities. Without that, the method becomes one of inverse
probability. Equation (5.18) is interpreted as equating the posterior probability of the
hypothesis Ek (after having acquired data A) to our prior estimate of the correctness
of Ek (i.e., before any data were acquired), P{Ek}, multiplied by the prior probability
of obtaining the data given the hypothesis (i.e., the likelihood; see below), the product
being normalized by dividing by the sum over all hypotheses.

A fundamental critique of Bayesian methods is that the Bayes–Laplace approach
regards hypotheses as being drawn at random from a population of hypotheses, a
certain proportion of which is true. “Bayesians” regard it as a strength that they
can include prior knowledge, or rather prior states of belief, in the estimation of
the correctness of a model. Since that appears to introduce a wildly fluctuating
subjectivity into the calculations, it seems more reasonable to regard that as a fatal
weakness of the method.17

To reiterate: our purpose is to find what is the most likely explanation of a set of
observations; that is, a description that is simpler, hence shorter, than the set of facts
observed to have occurred.18

The three pillars of statistical inference are as follows:

1. A statistical model: that part of the description that is not (at least at present) in
question (corresponding to K in Eq.2.13).

2. The data: that which has been observed or measured (unconditional information);
3. The statistical hypothesis: the attribution of particular values to the unknown

parameters of the model that are under investigation (conditional information).

The preferred values of those parameters are then those that maximize the likeli-
hood of the model, likelihood being defined in the following:

Definition. The likelihood L(H |R) of the hypothesis H given data R and a specific
model is proportional to P(R|H), the constant of proportionality being arbitrary but
constant in any one application (i.e., with the same model and the same data, but
different hypotheses).

The arbitrariness of the constant of proportion is of no concern since, in practice,
likelihood ratios are taken, as in the following:

17As Fisher and others have pointed out, it is not strictly correct to associate Bayes with the inverse
probability method. Bayes’ doubts as to its validity led him to withhold publication of his work (it
was published posthumously).
18Sometimes brevity is taken as the main criterion. This is the minimum description length (MDL)
approach. See also the discussion in Sects. 3.4 and 6.5.

http://dx.doi.org/10.1007/978-1-4471-6702-0_2
http://dx.doi.org/10.1007/978-1-4471-6702-0_3
http://dx.doi.org/10.1007/978-1-4471-6702-0_6
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Definition. The likelihood ratio of two hypotheses on some data is the ratio of their
likelihoods on that data. It will be denoted as L(H1, H2|R). The likelihood ratio of
two hypotheses on independent sets of data may be multiplied together to form the
likelihood ratio on the combined data:

L(H1, H2|R1&R2) = L(H1, H2|R1) × L(H1, H2|R2) . (5.44)

The fundamental difference between probability and likelihood is that in the inverse
probability approach R is variable and H constant, whereas in likelihood, H is
variable and R constant. In other words, likelihood is predicated on a fixed R.

We shall sometimes need to recall that if R1 and R2 are two possible, mutually
exclusive, results and P{R|H} is the probability of obtaining the result R given H ,
then

P{R1 or R2|H} = P{R1|H} + P{R2|H} (5.45)

and
P{R1 and R2|H} = P{R1|H}P{R2|H} . (5.46)

The method of likelihood reposes on the definitions of likelihood per se and of the
likelihood ratio.

Example. The problem is to determine the probability that a baby will be a boy.
We take a binomial model (cf. Sect. 5.2.3) for the occurrence of boys and girls in a
family of two children; we have two sets of data—R1: one boy and one girl, and R2:
two boys—and two hypotheses—H1: the probability p of a birth being male born
equals 1

4 , and H2: p = 1
2 . Hence,

P{R|H} R1 R2

H1 2p(1 − p) = 3
8 p2 = 1

16

H2 2p(1 − p) = 1
2 p2 = 1

4

.

By inspection, P{R|H} for H2 exceeds that for H1 for both sets of data, from
which we may infer that H2 is better supported by the data.

The concept of likelihood ratio can easily be extended to continuous distributions;
that is, P{R|H} becomes a probability density. The likelihood ratio is computed for
the distribution with respect to one value chosen arbitrarily and the maximum is
sought. Usually it is better to work in logarithms, and the support S is defined as
the logarithm of the likelihood, namely

S(p) = log L(p) . (5.47)

The curvature of S(p) at its maximum has been called the information, and its
reciprocal is a natural measure of the uncertainty about p (i.e., the width of the peak
is inversely related to the degree of certainty of the estimation).

The method of maximum likelihood provides the ability to deliver a conclusion
compatible with the given evidence.
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5.5 TheMaximum EntropyMethod

Consider the problem of deducing the positions of stars and galaxies from a noisy
map of electromagnetic radiation intensity. One should have an estimate for the
average noise level: The simple treatment of such a map is to reject every feature
greater than the mean noise level and accept every one that is greater. Such a map is
likely to be a considerably distorted version of reality.19

The maximum entropy method can be considered as a heuristic drill for applying
D. Bernoulli’s maxim: “Of all the innumerable ways of dealing with errors of obser-
vation, one should choose the one which has the highest degree of probability for
the complex of observations as a whole” (cf. footnote 18 in Chap.2). In effect, it is
a generalization of the method of maximum likelihood.

First, the experimental map must be digitized both spatially and with respect to
intensity; that is, it is encoded as a finite set of pixels, each of which may assume
one of a finite number of density levels. Let that density be m j at the j th pixel.
Then random maps are generated and compared with the data. All those inconsis-
tent with the data (with due regard to the observational errors) are rejected. The
commonest map remaining is then the most likely representation. This process is
the constrained maximization of the configurational entropy −∑

m j logm j (the
unconstrained maximization would simply lead to a uniform distribution of density
over the pixels). Maximum entropy image restoration yields maximum information
in Shannon’s sense.

References

Feller W (1967) An introduction to probability theory and its applications, vol 1, 3rd edn. Wiley,
New York

von Mises R (1931) Wahrscheinlichkeitsrechung. Deuticke, Leipzig
Mood AM (1940) The distribution theory of runs. Ann Math Stat 11:367–392
Planck M (1932) The concept of causality. Proc Phys Soc 44:529–539
Sommerhoff G (1950) Analytical biology. Oxford University press, London

19Implicitly, Platonic reality is meant here.

http://dx.doi.org/10.1007/978-1-4471-6702-0_2


6Randomness andComplexity

Randomness is a concept deeply entangled with bioinformatics. A random sequence
cannot convey information, in the sense that it could be generated by a recipient
merely by tossing a coin. Randomness is therefore a kind of “null hypothesis”; a
random sequence of symbols is a sequence lacking all constraints limiting the variety
of choice of successive symbols selected from a pool with constant composition (i.e.,
an ergodic source). Such a sequence has maximum entropy in the Shannon sense;
that is, it has minimum redundancy.

If we are using such an ideally random sequence as a starting point for assess-
ing departures from randomness, it is important to be able to recognize this ideal
randomness. How easy is this task? Consider the following three sequences:

1111111111111111111111111111111111

0101010101010101010101010101010101

1001010001010010101011110100101010

each of which could have been generated by tossing a coin. According to the results
from the previous two chapters, all three outcomes, indeed any sequence of 32 1s
and 0s, have equal probability of occurrence, namely 1/232. Why do the first two not
“look” random? Kolmogorov supposed that the answer might belong to psychology;
Borel even asserted that the human mind is unable to simulate randomness (pre-
sumably the ability to recognize patterns was—and is—important for our survival).
Yet, apparent pattern is also present in random sequences: van der Waerden (1927)
has proved that in every infinite binary sequence at least one of the two symbols
must occur in arithmetical progressions of every length. Hence, the first of the above
three sequences would be an unexceptionable occurrence in a much longer random
sequence—in fact, whether a given sequence is random is formally undecidable. At
best, then, we can hope for heuristic clues to the possible absence of randomness
and, hence, presumably the presence of meaning, in a gene sequence.

In anticipation of the following sections, we can already note that incompress-
ibility (i.e., the total absence of regularities) forms a criterion of randomness. This
criterion uses the notion of algorithmic complexity. The first sequence can be gener-
ated by the brief instruction “write ‘1’ 32 times” and the secondby the onlymarginally
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longer statement “write ‘01’ 16 times,” whereas the third, which was generated by
blindly tapping on a keyboard, has no apparent regularity.

“Absence of pattern” corresponds to the dictionary synonym “haphazard” (cf. the
French expression “au hasard”). By counting the number of 1s and 0s in a long
segment of the third sequence, we can obtain an estimate of the probability of occur-
rence of each symbol. “Haphazard” then means that the choice of each successive
symbol is made independently, without reference to the preceding symbol or sym-
bols, in sharp contrast to the second sequence, which could also be generated by the
algorithm “if the preceding symbol is 1, write 0, otherwise write 1” operating on a
starting seed of 1 or 6.

Note how closely this exercise of algorithmic compression is related to the general
aim of science: to find the simplest set of axioms that will enable all the observable
phenomena studied by the branch of science concerned to be explained (an empirical
fact being “explained” if the propositions expressing it can be shown to be a con-
sequence of the axioms constituting the scientific theory underpinning that branch).
For example, Maxwell’s equations turned out to be suitable for explaining the phe-
nomena of electromagnetism.1

Themeaning of randomness as denoting independence fromwhat has gone before
is well captured in the familiar expression “random access memory,” the significance
being that a memory location can be selected arbitrarily (cf. the German “beliebig”,
at whim), as opposed to a sequential access memory, whose elements can only be
accessed one after the other. Mention of memory brings to mind the fact that succes-
sive independent choices implies the absence of memory in the process generating
those choices.

The validity of the above is independent of the actual probabilities of choosing
symbols; that is, they may be equal or unequal. Although in many organisms it turns
out that the frequencies of occurrence of all four bases are in fact equal, this is by
no means universal, it being well known that thermophilic bacteria have more C≡G
base pairs than A=T in their genes, since the former, being linked by three hydrogen
bonds, are more thermally stable than the latter, which only have two (cf. Fig. 11.3).
Yet, we can still speak of randomness in this case. In binary terms, it corresponds to
unequal probabilities of heads or tails, and the sequence may still be algorithmically
incompressible; that is, it cannot be recreated by any means shorter than the process
actually used to generate it in the first place.

1An obvious corollary of this association of randomness with algorithmic compressibility is that
there is an intrinsic absurdity in the notion of an algorithm for generating random numbers, such
as those included with many compilers and other software packages. These computer-generated
pseudorandom numbers generally pass the usual statistical tests for randomness, but little is known
about how their nonrandomness affects results obtained using them.Quite possibly the best heuristic
sources of (pseudo)random digits are the successive digits of irrational numbers like π or

√
2. These

can be generated by a deterministic algorithm and, of course, are always the same, but in the sense
that one cannot jump to (say) the hundredth digit without computing those preceding it, they do
fulfil the criteria of haphazardness.

http://dx.doi.org/10.1007/978-1-4471-6702-0_11
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We have previously stated that bioinformatics could be considered to be the study
of the departures from randomness of DNA. We are shown a sequence of DNA:
Is it random? We want to be able to quantify its departure from randomness. Pre-
sumably those sequences belonging to viable organisms, or even to their individual
proteins or promoter sequences, are not random.What about introns, and intergenome
sequences? If they are indeed “junk,” as is sometimes (facetiously?) asserted, then
we might well expect them to be random. Even if they started their existence as
nonrandom sequences, they may have been randomized since they would be subject
to virtually no selection pressure. Mutations are supposed to be random and occur at
random places. The opposite procedure would be that all DNA sequences started as
random ones and then natural selection eliminated many according to some system-
atic criterion; therefore, the extant collection of the DNA of viable organisms on this
planet is not random. Can we, then, say anything about the randomness or otherwise
of an individual sequence taken in isolation?

Similar considerations apply to proteins. Given a collection of amino acid
sequences of proteins (which, to bemeaningful, should come from the samegenome),
we can assess the likelihood that they arose by chance and the degree of their depar-
tures from randomness.

All such sequences can be idealized as sequences of Bernoulli trials (see
Sect. 5.2.3), which are themselves abstractions of a coin tossing experiment. Since
order does not matter in determining the probability of a given overall outcome, 50
heads followed by 50 tails has the same probability of occurring as 50 alternations
of heads and tails, which again is no less probable than a particular realization in
which the heads and tails are “randomly” mixed.

Any nonbinary sequence can, of course, be encoded in binary form. Typical
procedures for biological sequences (amino acids or nucleotides) are to consider
nucleotides as purines (0) or pyrimidines (1), or amino acids as hydrophobic (apo-
lar) or hydrophilic (polar) residues (cf. Markov’s encoding of poetry as a sequence of
vowels and consonants). Alternatively, the nucleotides could constitute a sequence
in base 4 (A≡0, C≡1, T≡2, G≡3), which can then be converted to base 2.

It is a commonly held belief that after a long sequence of heads (say), the opposite
result (tails) becomes more probable. There is no empirical support for this assertion
in the case of coin tossing. In other situations in which the outcome depends on
selecting elements from a finite reservoir, however, clearly this result must hold.
Thus, if a piece of DNA is being assembled from a soup of base monomers at
initially equal concentrations, if by chance the sequence starts out by being poor in
A, say, then later on this must be compensated by enrichment (chain elongation ends
when all available nucleotides have been consumed).

Formal Notions of Randomness In order to proceed further, we need to more
carefully understand what we mean by randomness. Despite the fact that the man in
the street supposes that he has a good idea of what it means, randomness is a rather
delicate concept. The toss of an unbiased coin is said to be random; the probability
of heads or tails is 0.5. We cannot assess the randomness of a single result, but we
can assess the probability that a sequence of tosses is random. So perhaps we can

http://dx.doi.org/10.1007/978-1-4471-6702-0_5
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answer the question of whether a given individual sequence is random. The three
main notions of randomness are as follows:2

1. Stochasticity, or frequency stability, associated with von Mises, Wald, and
Church;3

2. Incompressibility or chaoticity, associated with Solomonoff, Kolmogorov, and
Chaitin;4

3. Typicality, associated with Martin-Löf (and essentially coincident with incom-
pressibility).

6.1 Random Processes

A process characterized by a succession of values of a characteristic parameter y is
called random if y does not depend in a completely definite way on the independent
variable, usually (laboratory) time t , but in the context of sequences, the independent
variable could be the position along the sequence. A random process is therefore
essentially different from a causal process (cf. Sect. 5.1). It can be completely defined
by the set of probability distributions W1(yt)dy, the probability of finding y in the
range (y, y + dy) at time t , W2(y1t1, y2t2) dy1 dy2, the joint probability of finding y
in the range (y1, y1 + dy1) at time t1 and in the range (y2, y2 + dy2) at time t2, and
so forth for triplets, quadruplets, . . . of values of y.

If there is an unchanging underlying mechanism, the probabilities are stationary
and the distributions can be simplified as W1(y)dy, the probability of finding y in
the range (y, y + dy); W2(y1y2t) dy1 dy2, the joint probability of finding y in the
ranges (y1, y1 + dy1) and (y2, y2 + dy2) separated by an interval of time t = t2 − t1;
and so on. Experimentally, a single long record y(t) can be cut into pieces (which
should be longer than the longest period supposed to exist), rather than carrying
out measurements on many similarly prepared systems. This equivalence of time

2After Volchan (2002).
3vonMises called the random sequences in accordwith this notion “collectives”. It was subsequently
shown that the collectives were not random enough (see Volchan (2002) for more details); for
example, the number 0.0123456789101112131415161718192021 . . . satisfied von Mises’ criteria
but is clearly computable.
4The Kolmogorov-Chaitin definition of the descriptive or algorithmic complexity K (s) of a sym-
bolic sequence s with respect to a machine M running a program P is given by

K (s) =
{ ∞ if there is no P such that M(P) = s
min{|P| : M(P) = s} otherwise .

(6.1)

This means that K (s) is the size of the smallest input program P that prints s and then stops
when input into M . In other words, it is the length of the shortest (binary) program that describes
(codifies) s. Insofar as M is usually taken to be a universal Turing machine, the definition is
machine-independent.

http://dx.doi.org/10.1007/978-1-4471-6702-0_5
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and ensemble averages is called ergodicity. Note, however, that many biological
systems appear to be frozen in small regions of state space, as a glass, and hence are
nonergodic (cf. Sect. 3.4.2).

Notice some of the difficulties inherent in the above description. For example, we
referred to “an unchanging underlying mechanism,” yet at the same time asserted
that a random process is one which does not depend in a completely definite way
on the independent variable. Yet, who would deny that the coin, whose tossing
generates that most archetypical of random sequences, does not follow Newton’s
laws ofmotion? This apparent paradox can be shown to be a consequence of dynamic
chaos (Sect. 7.3).

If successive values of y are not correlated at all, that is,

W2(y1t1, y2t2) = W1(y1t1)W1(y2t2) (6.2)

etc., all information about the process is completely contained in W1 and the process
is called a purely random process.

6.2 Markov Chains

In the previous sectionwe considered “purely random” processes inwhich successive
values of a variable, y, are not correlated at all. If, however, the next step of a process
depends on its current state; that is,

W2(y1y2t) = W1(y1)P2(y2|y1t) , (6.3)

where P2(y2|y1t) denotes the conditional probability that y is in the range (y2, y2 +
dy2) after having been at y1 at a time t earlier, we have a Markov chain.

Definition. A sequence of trialswith possible outcomes a (possible states of the sys-
tem), an initial probability distribution a(0), and (stationary) transition probabilities
defined by a stochastic matrix P is called a Markov chain.5

The probability distribution for an r -step process is

a(r) = a(0)Pr . (6.4)

If the first m steps of a Markov process lead from a j to some intermediate state ai ,
then the probability of the subsequent passage from ai to ak does not depend on the
manner in which ai was reached, that is,

p(m+n)
jk =

∑

i

p(m)
ji p(n)ik , (6.5)

where p(n)jk is the probability of a transition from a j to ak in exactly n steps (this is
a special case of the Chapman–Kolmogorov identity).

5In some of the literature, one finds stochastic matrices arranged such that the columns rather than
the rows sum to unity. The arrow in the top left-hand corner serves to indicate which convention is
being used.

http://dx.doi.org/10.1007/978-1-4471-6702-0_3
http://dx.doi.org/10.1007/978-1-4471-6702-0_7
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If upon repeated application of P the distribution a tends to an unchanging limit
(i.e., an equilibrium set of states) that does not depend on the initial state, theMarkov
chain is said to be ergodic, and we can write

lim
r→∞Pr = Q , (6.6)

where Q is a matrix with identical rows.6 Now,

P Pn = Pn P = Pn+1 , (6.7)

and if Q exists it follows, by letting n → ∞, that

P Q = Q P = Q (6.8)

from which Q (giving the stationary probabilities; i.e., the equilibrium distribution
of a) can be found.

If all the transitions of a Markov chain are equally probable, then there is a
complete absence of constraint; the process is purely random (a zeroth-order chain).
Higher-order Markov processes have already been discussed (see Sect. 2.2).

A Markov chain represents an automaton (cf. Sect. 7.1.1) working incessantly. If
the transformations were determinate (i.e., all entries in the transition matrix were
0 or 1), then the automaton would reach an attractor after a finite number of steps.
The nondeterminate transformation can, however, continue indefinitely (although if
any diagonal element is unity, it will get stuck there). If chains are nested inside
one another, one has a hidden Markov model (HMM, see Sect. 13.5.2): suppose that
the transformations accomplished by an automaton are controlled by a parameter
that can take values a1 or a2, say. If a1 is input, the automaton follows one matrix of
transitions and if a2 is input, it follows another set. The HMM is created if transitions
between a1 and a2 are also Markovian. Markov chain Monte Carlo (MCMC) is used
when the number of unknowns is itself an unknown.

One of the difficulties in the use of Markov chains to model processes is to
ensure adequate statistical justification for any conclusions. The problem essentially
concerns the inferences about the transition probabilities that one would like to
make from a long, unbroken observation.7 The problem becomes particularly acute
when evidence for higher-order Markov chains is sought, when the quantity of data
required might be unattainable. An important result is Whittle’s formula giving the
distribution of the transition count:

N (n)
uv (F) = F∗

uv , (6.9)

where N (n)
uv (F) is the number of sequences (a1, a2, . . . , an+1) having transition count

F = { fij}, and satisfying a1 = u and an+1 = v. The transition count together with
the initial state (with probability pa1 ) forms a sufficient statistic for the process, since

pa1 pa1a2 . . . panan+1 = pa1

∏

ij

p
fij

ij , (6.10)

6As for the transition matrix for a zeroth-order chain (i.e., independent trials).
7See Billingsley (1961), especially for the proof of Whittle’s formula, Eq. (6.9).

http://dx.doi.org/10.1007/978-1-4471-6702-0_2
http://dx.doi.org/10.1007/978-1-4471-6702-0_7
http://dx.doi.org/10.1007/978-1-4471-6702-0_13
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where the left-hand side is simply the probability of realizing a particular sequence
{x1, x2, . . . , xn+1}. For i, j = 1, . . . , s, fij is the number of m, with 1 ≤ m ≤ n, for
which am = i and am+1 = j ; F is therefore an s×s matrix, such that

∑
ij fij = n and

such that fi · − f·i = δiu − δiv, i = 1, . . . , s, for some pair u, v, where fi · = ∑
j fij,

and { fi ·} and { f· j } are the frequency counts of {a1, . . . , an} and {a2, . . . , an+1},
respectively, from which fi · − f·i = δia1 − δian+1 . In Eq. (6.9), F∗

uv is the (v, u)th
cofactor of the matrix F∗ = f ∗

ij , with components

f ∗
ij =

{
δij − fij/ fi · if fi · > 0
δij if fi · = 0 .

(6.11)

Problem. Prove that if P is stochastic, then any power of P is also stochastic.

The entropy of the transitions (i.e., the weighted variety of the transitions) can
be found from each row of the stochastic matrix according to Eq. (2.5). The (infor-
mational) entropy of the process as a whole is then the weighted average of these
entropies, the weighting being given by the equilibrium distribution of the states.
Hence, in a sense the entropy of a Markov process is an average of averages.

Problem. Consider the three-state Markov chain

→ 1 2 3
1 0.1 0.9 0.0
2 0.5 0.0 0.5
3 0.3 0.3 0.4

and calculate (i) the equilibrium proportions of the states 1, 2, and 3 and (ii) the
average entropy of the entire process.

6.3 RandomWalks

Consider an agent on a line susceptible to step right along the line with probability
p and left with probability q = 1 − p. We can encode the walk by writing +1 for
a right step and −1 for a left step. Many processes can be mapped onto the random
walk (e.g., a nucleic acid sequence, with purines ≡ −1 and pyrimidines ≡ +1). If
the walk is drawn in Cartesian coordinates as a polygon with the number of steps
(“time”) along the horizontal axis and the displacement along the vertical axis, then
if sk is the partial sum of the first k steps,

sk − sk−1 = ±1, s0 = 0, sn = n(p − q) , (6.12)

where n is the length of the path.

Definition. Let n > 0 and x be integers. A path (s1, s2, . . . , sn) from the origin to
the point (n, x) is a polygonal line whose vertices have abscissae 0, 1, . . . , n and
ordinates s0, s1, . . . , sn satisfying sk − sk−1 = εk = ±1, s0 = 0, and sn = p − q
(where p and q are now the numbers of symbols, p + q = n), with sn = x .

http://dx.doi.org/10.1007/978-1-4471-6702-0_2
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There are 2n paths of length n, but a path from the origin to an arbitrary point
(n, x) exists only if n and x satisfy

n = n(p + q), x = n(p − q) . (6.13)

In this case, the np positive steps can be chosen from among the n available places in

Nn,x =
(

p + q

p

)
=

(
p + q

q

)
(6.14)

ways.The averagedistance travelled aftern steps is∼ n1/2, and thevariance increases
linearly with the number of steps.

Diffusion is an example of a random walk. The diffusivity (diffusion coefficient)
D that gives the constant of proportionality in Fick’s first and second laws8 is given
by λ2/τ , where λ is the step length and τ is the duration of each step. The random
walk is, of course, an example of a Markov chain.

Problem. Write out the Markovian transition matrix for a random walk in one
dimension.

6.4 Noise

It might be thought that “noise” is the ultimate random, uncorrelated process. In
reality, however, noise can come in various “colours” according to the exponent of
its power spectrum.

8Fick’s first law is
Ji = −Di ∇ci , (6.15)

where J is the flux of substance i across a plane and c is its (position-dependent) concentration. In
one dimension, this law simply reduces to J = −D∂c(x)/∂x , where x is the spatial coordinate.
In most cases, especially in the crowded milieu of a living cell, it is more appropriate to use the
(electro)chemical potential μ than the concentration, whereupon the law becomes

Ji = −Di ∇μi (ci/kB T ) (6.16)

where T is the absolute temperature. Fick’s second law, appropriate for time-varying concentra-
tions, is

∂c/∂t = D∇2c . (6.17)

If D itself changes with position (e.g., the diffusivity of a protein depends on the local concentration
of small ions surrounding it), then we have

∂c/∂t = ∇ · (D∇c) . (6.18)

.
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Let x(t) describe a fluctuating quantity. It can be characterized by the two-point
autocorrelation function

Cx (n) =
N∑

j=1

x j x j−n (6.19)

(in discrete form), where n is the position along a nucleic acid or protein sequence
of N elements, and by the spectrum or amplitude spectral density

Ax (m) =
∞∑

j=−∞
x j e

−2πim , (6.20)

whose square is the power spectrum or power spectral density:

Sx (m) = |Ax (m)|2 , (6.21)

where m is sequential frequency. The autocorrelation function and the power spec-
trum are just each other’s Fourier transforms (theWiener–Kintchin relations, applica-
ble to stationary random processes).

A truly random process [“white noise,”w(t)] should have no correlations in time.
Hence,

Cw(τ ) ∝ δ(τ ) (6.22)

and
Sw( f ) ∝ 1 ; (6.23)

the power spectrum is convergent at low frequencies, but if one integrates up from
some finite frequency toward infinity, one finds a divergence: there is an infinite
amount of power at the highest frequencies; that is, a plot ofw(t) is infinitely choppy
and the instantaneous value of w(t) is undefined!

White noise is also called Johnson (who first measured it experimentally, in 1928)
or Nyquist (who first derived its power spectrum theoretically) noise. It is character-
istic of the voltage across a resistor measured at open circuit and is due to the random
motions of the electrons. The integral of white noise,

B(t) =
∫

w(t) dt , (6.24)

corresponds to a randomwalk or Brownianmotion (hence, “brown noise”). Its power
spectrum is

SB( f ) ∝ 1/ f 2 ; (6.25)

that is, it is convergent when integrating to infinity, but divergent when integrating
down to zero frequency. In other words, the function has a well-defined value at each
point, but wanders ever further from its initial value at longer and longer times; that
is, it does not have a well-defined mean value.

If current is flowing across a resistor, then the power spectrum of the voltage
fluctuations SF ( f ) ∝ 1/ f [“1/ f noise,” sometimes called “fractional Gaussian
noise” (FGN)], as a special case of fractionally integrated white noise. FGNs are
characterized by a parameter F : the mean distance travelled in the process described
by its integral G F (t) = ∫

xF (t) dt is proportional to t F , and the power spectrum
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SG( f ) ∝ 1/ f 2F−1. White noise has F = 1
2 , and 1/ f noise has F = 1. It is divergent

when integrated to infinite frequency and when integrated to zero frequency, but the
divergences are only logarithmic. 1/ f noise exhibits very long-range correlations,
the physical reason for which is still a mystery. Many natural processes exhibit 1/ f
noise.

6.5 Complexity

The notion of complexity occurs rather frequently in biology, where one often refers
to the complexity of this or that organism (cf. biological complexity, Sect. 9.7). Sev-
eral procedures for ascribing a numerical value to it have been devised, but for all
that it remains somewhat elusive. When we assert that a mouse is more complex
than a bacterium (or than a fly), what do we actually mean? Intuitively, the assertion
is unexceptionable—most people would presumably readily agree that man is the
most complex organism of all. Is our genome the biggest (as may once have been
believed)? No. Dowe havemore cell types than other organisms? Yes, and themouse
has more than the fly, but then complexity becomes merely a synonym for variety.
Or does it reflect what we can do? Man alone can create poems, theories, musical
compositions, paintings, and so forth. However, although one could perhaps compare
the complexity of different human beings on that basis, it would be useless for the
rest of the living world. Is complexity good or bad? A complex theory that nobody
apart from its inventor can understand might be impressive, but not very useful. On
the other hand, we have the notion, again rather intuitive, that a complex organism is
more adaptable than a simple one, because it has more possibilities for action; hence,
it can better survive in a changing environment.9

Other pertinent questions are whether complexity is an absolute attribute of an
object, or does it depend on the level of detail with which one describes it (in other
words, how its description is encoded—an important consideration if one is going
to extract a number to quantify complexity)? Every writer on the subject seems to
introduce his own particular measure of complexity, with a corresponding special
name—what do these different measures have in common? Do printed copies of a
Shakespeare play have the same complexity as the original manuscript? Does the
fiftieth edition have less complexity than the first?

The antonymof complexity is simplicity; the antonymof randomness is regularity.
A highly regular pattern is also simple. Does this, then, suggest that complexity is a
synonym for randomness?

An important advance was Kolmogorov’s notion of algorithmic complexity (also
called algorithmic information content or AIC) as a criterion for randomness. As we

9If this is so, it then seems rather strange that somuch ingenuity is expended by presumably complex
people to make their environments more uniform and unchanging, in which case they will tend to
lose their competitive advantage.

http://dx.doi.org/10.1007/978-1-4471-6702-0_9
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have seen near the beginning of this chapter (footnote 4), the AIC, K (s), of a string
s is the length of the smallest program (running on a universal computing machine)
able to print out s. Henceforth we shall mainly consider the complexity of strings
(objects can, of course, be encoded as strings). If there are no regularities, K (s) will
have its maximum possible value, which will be roughly equal to the length of the
string; no compression is possible and the string has to be printed out verbatim.10

Hence,
Kmax = |s| . (6.26)

Any regularities (i.e., constraints in the choice of successive symbols) will diminish
the value of K . We call Kmax the unconditional complexity; it is actually a measure
of regularity.

This definition leads to the intuitively unsatisfying consequence that the highest
possible complexity, the least regularity, the greatest potential information gain,
etc. is possessed by a purely random process, which then implies that the output
of the proverbial team of monkeys tapping on keyboards is more complex than a
Shakespeare play (the difference would, however, vanish if the letters of the two
texts were encoded in such a way that the same symbol was used to encode each
letter).What wewould like is some quantity that is small for highly regular structures
(low disorder), then increases to amaximum as the system becomesmore disordered,
and finally falls back to a low value as the disorder approaches pure randomness.

In order to overcome this difficulty, Gell-Mann has proposed effective complexity
to be proportional to the length of a concise description of a set of an object’s
regularities, which amounts to the algorithmic complexity of the description of the
set of regularities. This prescription certainly fulfils the criterion of correspondence
with the intuitive notion of complexity; both a string consisting of one type of symbol
and the monkey-text would have no variety in their regularity and hence minimal
complexity. One way of assessing the regularities is to divide the object into parts
and examine the mutual algorithmic complexity between the parts. The effective
complexity is then proportional to the length of the description of those regularities.

Correlations within a symbolic sequence (string) have been used by Grassberger
(1986) to define effective measure complexity (EMC) from the correlation informa-
tion (see Sect. 2.2):

η =
∞∑

m=2

(m − 1)km . (6.27)

In effect, it is a weighted, average correlation length.
A more physically oriented approach has been proposed by Lloyd and Pagels

(1988). Their notion of (thermodynamic) depth attempts to measure the process

10Many considerations of complexity may be reduced to the problem of printing out a number.
Thus, the complexity of a protein structure is related to the number specifying the positions of the
atoms, or dihedral angles of the peptide groups, which is equivalent to selecting one from a list of
all possible conformations; the difficulty of doing that is roughly the same as that of printing out
the largest number in that list.

http://dx.doi.org/10.1007/978-1-4471-6702-0_2
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whereby an object is constructed. A complex object is one that is difficult to put
together;11 the average complexity of a state is the Shannon entropy of the set of
trajectories leading to that state (−∑

pi log pi , where pi is the probability that the
system has arrived at that state by the i th trajectory) and the depthD of a system in a
macroscopic state d is∼− log pi . An advantage of this process-oriented formulation
is the way in which the complexity of copies of an object can be dealt with; the depth
of a copy, or any number of copies, is proportional to the depth of making the original
object plus the depth of the copying process.

Process is used by Lempel and Ziv (1976) to derive a complexity measure, called
production complexity, based on the gradual buildup of new patterns (rate of vocab-
ulary growth) along a sequence s:

c(s) = min{cH (s)} (6.28)

where minimization is over all possible histories of s and cH (s) is the number of
components in the history. The production history H(s) is defined as the parsing of
s into its m components (words):

H(s) = s(1, h1)s(h1 + 1, h2) · · · s(hm−1 + 1, hm) . (6.29)

c(s) is thus the least possible number of steps in which s can be generated according
to the given rules of production.

In order to go beyond purely internal qualities (i.e., correlations) of the string, it
will be useful to introduce some additional quantities, such as the joint algorithmic
complexity K (s, t), the length of the smallest program required to print out two
strings s and t :

K (s, t) ≈ K (t, s) � K (s) + K (t) ; (6.30)

the mutual algorithmic information

K (s : t) = K (s) + K (t) − K (s, t) (6.31)

(which reflects the ability of a string to share information with another string); con-
ditional algorithmic information (or conditional complexity)

K (s|t) = K (s, t) − K (t) (6.32)

(i.e., the length of the smallest program that can compute s from t); and algorithmic
information distance

D(s, t) = K (s, t) + K (t |s) (6.33)

(the reader may verify that this measure fulfils the usual requirements for a distance).
Adami and Cerf (2000) have emphasized that randomness and complexity only

exist with respect to a specific, defined, environment e (i.e., context). Consider the
conditional complexity K (s|e). The smallest program for computing s from e will
only contain elements unrelated to e, since if theywere related, they could be obtained

11Cf. the nursery rhyme Humpty Dumpty sat on a wall/Humpty Dumpty had a great fall/And all the
king’s horses and all the king’s men/Couldn’t put Humpty together again. It follows that Humpty
Dumpty had great depth, hence complexity.
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(i.e., deduced) from e with a program tending to size zero. Hence, K (s|e) quantifies
those elements in s that are random (with respect to e).12 In principle, we can now
use the mutual algorithmic information defined by Eq. (6.31) to determine

K (s : e) = Kmax − K (s|e) , (6.34)

which represents the number of meaningful elements in string s, although it might
not be practically possible to compute K (s|e) unless one is aware of the coding
scheme whereby some of e is encapsulated in s. A possible way of overcoming this
difficulty is opened where there exist multiple copies of a sequence that have adapted
independently to e. It may then reasonably be assumed that the coding elements are
conserved (and have a nonuniform probability distribution), whereas the noncoding
bits are fugitive (and have a uniform probability distribution). The information about
e contained in the ensemble S of copies is then the Shannon index I (S) − I (S|e).
In finite ensembles, the quantity

I (S|e) = −
∑

s

p(s|e) log p(s|e) (6.35)

can be estimated by sampling the distribution p(s|e).
Computational complexity reflects how the number of elementary operations

required to compute a number increases with the size of that number. Hence, the
computational complexity of “011011011011011011 . . .” is of order unity, since
one merely has to specify the number of repetitions.

Algorithmic and computational complexity are combined in the concept of logical
depth,13 defined as the number of elementary operations (machine cycles) required
to calculate a string from the shortest possible program. Hence, the number π, whose
specification requires only a short program, has considerable logical depth because
that program has to execute many operations to yield π.

Problem. A deep notion is generally held to be more meaningful than a shallow
one. Could one, then, identify complexity with meaning? Discuss the use of the ways
of quantifying complexity, especially effective complexity, as a measure of meaning
(cf. Sect. 2.3.2).
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Just as we are often interested in events that are composed of many elementary
(simple) events, in biology the objects under scrutiny are vastly complex objects
composed of many individual molecules (the molecule is probably the most appro-
priate level of coarse graining for the systems we are dealing with). Since these
components are connected together, they constitute a system. The essence of a sys-
tem is that it cannot be usefully decomposed into its constituent parts.More formally,
following R.L. Ackoff we can assert that two or more objects (which may be entities,
or activities, etc.) constitute a system if the following four conditions are satisfied:

1. One can talk meaningfully of the behaviour of the whole of which they are the
only parts;

2. The behaviour of each part can affect the behaviour of the whole;
3. The way each part behaves and the way its behaviour affects the whole depends

on the behaviour of at least one other part;
4. Nomatter how one subgroups the parts, the behaviour of each subgroupwill affect

the whole and depends on the behaviour of at least one other subgroup.

There are various corollaries, one of the most important and practical of which
is that a system cannot be investigated by looking at its components individually, or
by varying one parameter at a time, as Fisher (1951) seems to have been the first to
realize. Thus, a modus operandi of the experimental scientist inculcated at an early
age and reinforced by the laboratory investigation of “simple systems”1 turns out
to be inappropriate and misleading when applied to most phenomena involving the
living world.

1Here we plead against the use of the terms “simple system” and “complex system”: the criteria
given above imply that no system is simple, and that every system is complex.
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Another corollary is that the concept of feedback, which is usually clear enough to
apply to two-component systems, is practically useless in more complex systems.2

In this chapter, we shall first consider the approach of general systems theory,
largely pioneered by Bertalanffy (1993). This allows some insight into the behaviour
of very simple systems with not more than two components, but thereafter statistical
approaches have to be used.3 This is successful for very large systems, in which
statistical regularities can be perceived; the most difficult cases are those of interme-
diate size. Some properties of networks per se will then be examined, followed by a
brief look at synergetics (systems with a diffusion term), and the final section deals
with complex evolving systems.

Problem. Consider various familiar objects, and ascertain using the above criteria
whether they are systems.

7.1 General SystemsTheory

Consider a system containing n interacting elements G1, G2, . . . , Gn . Let the values
of these elements be g1, g2, . . . , gn . For example, if the G denote species of animals,
then g1 could be the number of individual animals of species G1. The temporal
evolution of the system is then described by

dg1
dt

= G1(g1, g2, . . . , gn)

dg2
dt

= G2(g1, g2, . . . , gn)

... (7.1)
dgn

dt
= Gn(g1, g2, . . . , gn)

where the functions G include terms proportional to g1, g
2
1, g

3
1, . . . , g1g2, g1g2g3,

etc. In practice, many of the coefficients of these terms will be close or equal to zero.
If we only consider one variable,

dg1
dt

= G1(g1) . (7.2)

Expanding gives
dg1
dt

= rg1 − r

K
g21 + · · · (7.3)

2Even in two component systems its nature can be elusive. For example, as Ashby (1956) has
pointed out, are we to speak of feedback between the position and momentum of a pendulum?
Their interrelation certainly fulfils all the formal criteria for the existence of feedback.
3Robinson (1998) has recently proved that all possible chaotic dynamics can be approximated in
only three dimensions.
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where r > 0 and K > 0 are constants. Retaining terms up to g1 gives simple
exponential growth,

g1(t) = g1(0)e
rt (7.4)

where g1(0) is the quantity of g1 at t = 0. Retaining terms up to g21 gives

g1(t) = K

1 + e−r(t−m)
, (7.5)

the so-called logistic equation, which is sigmoidal with a unique point of inflexion at
t = m, g1 = K/2 at which the tangent to the curve is r , and asymptotes g1 = 0 and
g1 = K . r is called the growth rate and K is called the carrying capacity in ecology.4

Consider now two objects,

dg1/dt = a11g1 + a12g2 + a111g21 + · · ·
dg2/dt = a21g1 + a22g2 + a211g21 + · · ·

}
(7.6)

in which the functions G are now given explicitly in terms of their coefficients a (a11,
for example, gives the time in which an isolated G1 returns to equilibrium after a
perturbation). The solution is

g1(t) = g∗
1 − h11eλ1t − h12eλ2t − h111e2λ1t − · · ·

g2(t) = g∗
2 − h21eλ1t − h22eλ2t − h211e2λ1t − · · ·

}
(7.7)

where the starred quantities are the stationary values, obtained by setting dg1/dt =
dg2/dt = 0, and the λs are the roots of the characteristic equation, which is (ignoring
all but the first two terms of the right hand side of Eq.7.6)

a11 − λ a12
a21 a11 − λ

= 0 . (7.8)

Depending on the values of the a coefficients, the phase diagram (i.e. a plot of g1 vs
g2) will tend to a point (all λ are negative), or a limit cycle (the λ are imaginary, hence
there are periodic terms), or there is no stationary state (λ are positive). Regarding
the last case, it should be noted that however large the system, a single positive λ
will make one of the terms in (7.7) grow exponentially and hence rapidly dominate
all the other terms.

Although this approach can readily be generalized to any number of variables, the
equations can no longer be solved analytically and indeed the difficulties become
forbidding. Hence onemust turn to statistical properties of the system. Equation (7.6)
can be written compactly as

ġ = Ag (7.9)

4Unrelated to the previous K (Sects. 2.1.3 and 6.5). We retain the same symbol here because of
“K -selection” (Sect. 10.8.4), an expression well anchored in the literature of ecology. Yet another
unrelated use of K is in Kauffman’s (1984) NK model (Sect. 7.2.3).

http://dx.doi.org/10.1007/978-1-4471-6702-0_2
http://dx.doi.org/10.1007/978-1-4471-6702-0_6
http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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where g is the vector (g1, g2, . . .), ġ its time differential, and A the matrix of the
coefficients a11, a12 etc. connecting the elements of the vector. The binary connec-
tivity C2 of A is defined as the proportion of nonzero coefficients.5 In order to decide
whether the system is stable or unstable, we merely need to ascertain that none of
the roots of the characteristic equation are positive, for which the Routh–Hurwitz
criterion can be used without actually having to solve the equation. Gardner and
Ashby (1970) determined the dependence of the probability of stability on C2 by
distributing nonzero coefficients at random in the matrix A for various values of the
number of variables n. They found a sharp transition between stability and instabil-
ity: for C < 0.13, a system will almost certainly be stable, and for C > 0.13, almost
certainly unstable. For very small n the transition became rather gradual, viz. for
n = 7 the probability of stability is 0.5 at C2 ≈ 0.3, and for n = 4, at C2 ≈ 0.7.

7.1.1 Automata

We can generalize the Markov chains from Sect. 6.2 by writing Eq. (7.9) in dis-
crete form:

g′ = Ag (7.10)

i.e. the transformation A is applied at discrete intervals and g′ denotes the values
of g at the epoch following the starting one. The value of gi now depends not only
on its previous value, but also on the previous values of some or all of the other
n − 1 components. Generalizations to the higher-order coefficients are obvious but
difficult to write down; we should bear in mind that application of this approach to
the living cell is likely to require perhaps third or fourth order coefficients, but that
the corresponding matrices will be extremely sparse.

The analysis of such systems usually proceeds by restricting the values of the
g to integers, and preferably to just zero or one (Boolean automata). Consider an
automaton with just three components, each of which has an output connected to the
other two. Equation (7.10) becomes

⎛

⎝
g1
g2
g3

⎞

⎠
′
=

⎛

⎝
0 1 1
1 0 1
0 0 1

⎞

⎠ ♦
⎛

⎝
g1
g2
g3

⎞

⎠ (7.11)

where ♦ denotes that the additions in the matrix multiplication are to be carried
out using Boolean AND logic; i.e., according to Table7.1. Enumerating all possible
starting values leads to the state structure shown in Fig. 7.1. The problem at the end of
this subsection will help the reader to be convinced that state structure is not closely
related to physical structure (the pattern of interconnexions). In fact, to study a system
one needs to determine the state structure and know both the interconnexions and
the functions of the individual objects (cells).

5The ternary connectivity takes into account connexions between three elements, i.e. contains
coefficients like a123, etc.

http://dx.doi.org/10.1007/978-1-4471-6702-0_6
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Table 7.1 Truth table for an
AND gate

Input Output

0 0

1 0

2 1

Fig. 7.1 State structure of
the automaton represented by
Eq. (7.11) and Table7.1

Most of the work on the evolution of automata (state structures) considers the
actual structure (interconnexions) and the individual cell functions to be immutable.
For biological systems, this appears to be an oversimplification. Relative to the
considerable literature on the properties of various kinds of networks, very little has
been done on evolving networks, however.6

Problem. Determine the state structure of an automaton if (i) the functions of the
individual cells are changed from those represented by (7.11) such that G1 becomes
1 whenever G2 is 1, G2 becomes 1 whenever G3 is 1, and G3 becomes 1 whenever
G1 and G2 have the same value; (ii) keep these functions, but connect G1’s output to
itself and G3, G2’s output to itself, G1 and G3, and G3’s output to G2; and (iii) keep
these new interconnexions, but restore the functions to those represented by (7.11)
and Table7.1. Compare the results with each other and with Fig. 7.1.

7.1.2 Cellular Automata

This term is usually applied to cells arranged in spatial proximity to each other,
whose states are updated according to a rule such as n′

i = (ni−1+ni +ni+1) mod 2,
where ni is the current state of the i th cell. The most widely studied ones are only

6An exception is Érdi and Barna’s (1984) work on a model of neuron interconnexions, simulating
Hebb’s rule (traffic on a synapse strengthens it, i.e. increases its capacity).
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connected to their nearest neighbours. Despite this simplicity, their evolution can be
rather elaborate and even unpredictable. Wolfram (1983) has made an exhaustive
study of one dimensional cellular automata, in which the cells are arranged on a
line. Higher dimensional automata are useful in analysing biological processes; for
example a two-dimensional automaton can be used to investigate neurogenesis in a
membrane of undifferentiated precursor cells.7

7.1.3 Percolation

Consider a spatial array of at least two dimensions, with cells able to take values of
zero or one, signifying respectively “impermeable” and “permeable” to some agent
migrating across the array and only able to move from a permeable site to a nearest
neighbour that is also permeable. Let p be the probability that a cell has the value
1. If ones are sparse (i.e. low p), the mobility of the agent will be restricted to small
isolated islands. The most important problem in this field is to determine the mean
value of p at which an agent can span the entire array via its nearest neighbour
connexions. This is so-called “site percolation”.8

A possible approach to determine the critical value pc is as follows: the probability
that a single permeable cell on a square lattice is surrounded by impermeable ones
(i.e. is a singlet) is pq4, where q = 1− p. Defining ns(p) to be the average number
of s-clusters per cell, then we have n2(p) = 2p2q6 for doublets, (the factor 2 arises
because of the two possible perpendicular orientations of the doublet), n3(p) =
2p3q8 + 4p3q7 for triplets (linear and bent), etc. If there are few permeable cells,∑

s sns(p) = p; if there are many we can expect most of the particles to belong to
an infinite (in the limit of an infinite array) cluster, hence

∑
s sns(p)+ P∞ = p, and

the mean cluster size S(p) = ∑
s s2ns(p)/p. If S(p) is now expanded in powers

of p, one finds that at a certain value of p the series diverges; this is when the
infinite (spanning) cluster appears, and we can call the array “fully connected”. The
remarkable Galam and Mauger (1996) formula gives this critical threshold pc for
isotropic lattices:

pc = a[(D − 1)(C − 1)]−b (7.12)

where D is the dimension, C the connectivity of the array (i.e. the number of nearest
neighbours of any cell), and a and b are constants with values 1.2868 and 0.6160
respectively, allows one to calculate the critical threshold for many different types
of network.

7Luthi et al. (1998).
8In “bond percolation” movement occurs along links joining nearest neighbours with probability
p. Every bond process can be converted into a site one, but not every site process is a bond one.
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Fig. 7.2 A fragment of a
network (graph). Note the two
types of nodes and that some
of the vertices are directed

7.2 Networks (Graphs)

The cellular automata considered above (Sect. 7.1.2) are examples of regular net-
works (of automata): the objects are arranged on a regular lattice and connected in an
identical fashionwith neighbours. Consider now a collection of objects (nodes or ver-
tices) characterized by number, type and interconnexions (edges or links). Figure7.2
represents an archetypical fragment of a network (graph). The connexions between
nodes can be given by an adjacency matrix A whose elements ai j give the strength
of the connexion (in a Boolean network a = 1 or 0, respectively connexion present
or absent) between nodes i and j . In a directed graph A need not be symmetric.
An oriented graph is a directed graph in which every edge is oriented. The element
[Ar ]i j gives the number of walks of length r between nodes i and j .9

If the only knowledge one has is of the positions of the objects in space, the
adjacency matrix can be constructed by defining an edge to exist between a pair of
objects if the distance between them is less than a certain threshold.

We begin by considering the structural properties of a network. Useful parameters
are the following: N , the number of nodes; E , the number of edges; 〈k〉, the average
degree of each node (the number of other vertices towhich a given vertex is joined); L ,
the network diameter (the smallest number of edges connecting a randomly chosen
pair of nodes; this is a global property);10 and the cliquishness C defined as the
fraction of nodes linked to a given vertex that are themselves connected (this is a
local property), or, in other words, the (average) number of times any two nodes
connected to a third node are themselves connected. Hence, this is equivalent to the
number of closed triangles in the network, that is,

C ∝ Tr A3 , (7.13)

from which a relative clustering coefficient can be defined as

Cr = C/N . (7.14)

9A mesh network is one in which there are at least two pathways of communication to each node.
Such networks are, of course, more resilient with respect to failure of some pathways.
10A useful way to compute L is given by Raine and Norris (2002).
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The maximum number of possible edges in a network is N (N −1)/2 (the factor 2 in
the denominator arising because each edge has two endpoints); the connectivity C
is the actual number of edges (which may be weighted by the strength of each edge)
divided by the maximum number. A graph with C = 1 is known as complete. The
degree matrix D is constructed as

D = diag(k1, . . . , kN ) , (7.15)

where ki the degree of the i th node, fromwhich the theLaplacematrix L = D−A and
the normalized Laplacematrix L̄ = I −D−1A can be determined. The eigenvalues of
L are useful for giving rapid information about the connectivity, robustness, stability,
and so forth.

Two important generic topologies of graphs are as follows:
(i) random (Erdős–Rényi) graphs. Each pair of nodes is connectedwith probability

p; the connectivity of such a network peaks strongly at its average value and decays
exponentially for large connectivities. The probability p(k) that a node has k edges
is given by μke−μ/k!, where μ = 2N p is the mean number of edges per node.
The smallest number of edges connecting a randomly chosen pair of nodes (i.e., the
network diameter L) is ∼ log N (cf. ∼ N for a regular network). The cliquishness
(clustering coefficient) C = μ. This type of graph has a percolation-like transition.
If there are M interconnexions, then when M = N/2 a giant cluster of connected
nodes appears.

A special case of the random graph is the small world. This term applies to
networks in which the smallest number of edges connecting a randomly chosen pair
of nodes is comparable to the log N expected for a random network (i.e., much
smaller than for a regular network), whereas the local properties are characteristic
of a regular network (i.e., the clustering coefficient is high). The name comes from
the typical response, “It’s a small world!” uttered when it turns out that two people
meeting for the first time and with no obvious connexion between them have a
common friend.11

(ii) the “scale-free” networks, in which the probability P(k) of a node having
k links ∼k−γ , where γ is some constant.12 A characteristic feature of a scale-free
network is therefore that it possesses a very small number of highly connected nodes.
Many properties of the network are highly vulnerable to the removal of these nodes.

11The first published account appears in F. Karinthy, Láncszemek (in: Címszavak a Nagy Encik-
lopédiához, vol. 1, pp. 349–354. Budapest: Szépirodalmi Könyvkiadó (1980). It was first published
in the 1920s). A simple way of constructing a model small-world network has been given by Watts
and Strogatz (1998): start with a ring of nodes each connected to their k nearest neighbours (i.e., a
regular network). Then detach connexions from one of their ends with probability p and reconnect
the freed end to any other node (if p = 1, then we recover a random network). As p increases, L
falls quite rapidly, but Conly slowly (as 3(μ − 2)/[4(μ − 1)]). The small-world property applies to
the régime with low L but high C.
12Scale-free networks seem to be widespread in the world. The first systematic investigation of their
properties is supposed to have been conducted by Dominican monks in the thirteenth and fourteenth
centuries, in connexion with eradicating heresy.
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A simple algorithm for generating scale-free networks was developed by Albert
and Barabási (2002): Start with a small number m0 of nodes and add, stepwise, new
nodes with m(≤ m0) edges, linking each new node to m existing nodes. Unlike the
random addition of edges that would result in an Erdős–Rényi graph, the nodes are
preferentially attached to already well-connected nodes; that is, the probability that
a new node will be connected to existing node i is

P(ki ) = ki/
∑

j

k j . (7.16)

After t steps, one has m0 + t nodes and mt edges, and the exponent γ appears (from
numerical simulations) to be 3.

The average degree of this network remains constant as it grows. Empirical studies
have shown, however, that inmany natural systems, the average degree increaseswith
growth (this phenomenon is called “accelerated growth”); in other words, each new
node is connected to a fixed fraction of the existing nodes. In this case, E ∼ N 2.

7.2.1 Trees

A tree is a graph in which each pair of vertices is joined by a unique edge; there is
exactly one more vertex than the number of edges. In a binary tree, each vertex has
either one or three edges connected to it. A rooted tree has one particular node called
the root (corresponding to the point at which the trunk of a real (biological) tree
emerges from the ground). Trees represent ultrametric space satisfying the strong
triangle inequality

d(x, z) ≤ max{d(x, y), d(y, z)} , (7.17)

where x, y, and z are any three nodes and d is the distance between a pair of nodes.
Trees are especially useful for representing hierarchical systems. The clustering
coefficient of a tree equals zero.

The complexity C of a tree T consisting of b subtrees T1, . . . ,Tb (i.e., b is the
number of branches at the root), of which k are not isomorphic, is defined as13

C = D − 1 , (7.18)

where the diversity measureD counts both interactions between subtrees and within
them and is given by

D = (2k − 1)
k∏

j=1

D(T(i)
j ) . (7.19)

If a tree has no subtrees,D = 1; the complexity of this, the simplest kind of tree, is set
to zero (hence, Eq.7.18). Any tree with a constant branching ratio at each mode will
also haveD = 1 and, hence, zero complexity. This complexity measure satisfies the
intuitive notion that the most complex structures are intermediate between regular
and random ones (cf. Sect. 6.5).

13See Huberman and Hogg (1986).

http://dx.doi.org/10.1007/978-1-4471-6702-0_6
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7.2.2 Complexity Parameters

There are various measures of network complexity:

1. κ, the number of different spanning trees of the network
2. Structural complexity, the number of parameters needed to define the graph
3. Edge complexity, the variability of the second shortest path between two nodes
4. Network or β-complexity, given by the ratio C/L
5. Algorithmic complexity, the length of the shortest algorithm needed to describe

the network (see also Chap.6).

7.2.3 Dynamical Properties

The essential concepts of physical structure and state structure were already intro-
duced in Sect. 7.1.1 and Fig. 7.1. A considerable body ofwork has been accomplished
along these lines: investigating the state structures of simple, or simply constructed,
networks. Kauffman (1984), in particular, has studied large randomly connected
Boolean networks, with the interesting result that if each node has on average two
inputs from other nodes; typically, the state structure comprises about N 1/2 cyclic
attractors, where N is the number of nodes (i.e., far fewer than the 2N potentially
accessible states).

More generally, Kauffman (1984) considered strings of N genes, each present
in the form of either of two alleles (0 and 1).14 In the simplest case, each gene
is independent, and when a gene is changed from one allele to the other, the total
fitness changes by at most 1/N . If epistatic interactions (when the action of one gene
is modified by others) are allowed, the fitness contribution depends on the gene plus
the contributions from K other genes (the N K model),15 and the fitness function or
“landscape” becomes less correlated and more rugged.16

Érdi and Barna (1984) have studied how the pattern of connexions changes when
their evolution is subjected to certain simple rules; the evolution of networks of
automata in which the properties of the automata themselves can change has barely
been touched, although this, the most complex and difficult case, is clearly the one
closest to natural networks within cells and organisms. The study of networks and
their application to real-world problems has, in effect, only just begun.

14Here we preempt some of the discussion in Sect. 10.9.2.
15This is yet another use of the symbol K—see footnote 4 earlier in this chapter.
16Note that, as pointed out by Jongeling (1996), fitness landscapes cannot be used tomodel selection
processes if the entities being selected do not compete.

http://dx.doi.org/10.1007/978-1-4471-6702-0_6
http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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7.3 Synergetics

General systems theory (Sect. 7.1) can be further generalized and made more pow-
erful by including a diffusion term:

∂ui

∂t
= 1

τi
Fi (u1, u2, . . . , un) + Di�ui , i = 1, 2, . . . , n . (7.20)

ui is a dynamic variable (e.g., the concentration of the i th object at a certain point
in space), Fi (ui ) are functions describing the interactions, τi is the characteristic
time of change, and Di is the diffusion coefficient (diffusivity) of the i th object.
Equation (7.20) is thus a reaction–diffusion equation that explicitly describes the
spatial distribution of the objects under consideration. The diffusion term tends to
zero if the diffusion length li > L , the spatial extent of the system, where

li = D1/2
i τi . (7.21)

Although solutions of Eq. (7.20) might be difficult for any given case under explicit
consideration, in principle we can use it to describe any system of interest. This area
of knowledge is called synergetics. Note that the “unexpected” phenomena often
observed in elaborate systems can be easily understood within this framework, as
we shall see.

One expects that the evolution of a system is completely described by its n equa-
tions of the type (7.20), together with the starting and boundary conditions. Suppose
that a stationary state has been reached, at which all of the derivatives are zero, and
described by the variables ū1, . . . , ūn , at which all the functions Fi are zero. Small
deviations δui may nevertheless occur and can be described by a system of linear
differential equations

d

dt
δui =

n∑

j

ai jδu j , (7.22)

where the coefficients ai j are defined by

ai j = ∂Fi

∂ui

∣∣∣∣
ui =ūi

. (7.23)

The solutions of Eq. (7.22) are of the form

δu j (t) =
n∑

j

εi j e
λi t , (7.24)

where the εi j are coefficients proportional to the starting deviations [viz. ε = δu(0)].
Theλs are called the Lyapunov numbers, which can, in general, be complex numbers,
the eigenvalues of the system; they are the solutions of the algebraic equations

det|ai j − δi jλ j | = 0 , (7.25)

where δi j is Kronecker’s delta.17 We emphasize that the Lyapunov numbers are
purely characteristic of the system; that is, they are not dependent on the starting

17δi j = 0 when i �= j and 1 when i = j .
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conditions or other external parameters—provided the external influences remain
small.

If all of the Lyapunov numbers are negative, the system is stable—the small
deviations decrease in time. On the other hand, if at least one Lyapunov number
is positive (or, in the case of a time-dependent Lyapunov number, if the real part
becomes positive as time increases), the system is unstable, the deviations increase
in time, and this is what gives rise to “unexpected” phenomena. If none are positive,
but there are some zero or pure imaginary ones, then the stationary state is neutral.

7.3.1 Some Examples

The simplest bistable system is described by

du

dt
= u − u3 . (7.26)

There are three stationary states, at u = 0 (unstable; the Lyapunov number is +1)
and u = ±1 (both stable), for which the equation for small deviations is

d

dt
δu = −3δu (7.27)

and the Lyapunov numbers are −3. This system can be considered as a memory box
with an information volume equal to log2(number of stable stationary states) = 1 bit.

A slightly more complex system is described by the two equations

du1/dt = u1 − u1u2 − au2
1

du2/dt = u2 − u1u2 − au2
2

}
. (7.28)

The behaviour of such systems can be clearly and conveniently visualized using a
phase portrait (e.g., Fig. 7.3). To construct it, one starts with arbitrary points in the
(u1, u2) plane and uses the right-hand side of Eq. (7.28) to determine the increments.
Themain isoclines (atwhose intersections the stationary states are found) are givenby

du1/dt = F1(u1, u2) = 0
du2/dt = F2(u1, u2) = 0

}
. (7.29)

Total instability, in which every Lyapunov number is positive, results in dynamic
chaos. Intermediate systems have strange attractors (which can be thought of as
stationary states smeared out over a region of phase space rather than contracted to
a point), in which the chaotic régime occurs only in some portions of phase space.

7.3.2 Reception and Generation of Information

If the external conditions are such that in the preceding example (Eq.7.28) the starting
conditions are not symmetrical, then the system will ineluctably arrive at one of the
stationary states, as fixed by the actual asymmetry in the starting conditions. Hence,
information is received.
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Fig. 7.3 Phase portrait of the system represented by Eq. (7.28) with a = 1/3. The
main isoclines (cf. 7.28) are u1 = 0 and u2 = 1 − au1 (“vertical”, determined from
F1 = u1 − u1u2 − au2

1 = 0 with �u1 = 0), and u2 = 0 and u1 = 1 − au2 (“horizontal”, deter-
mined from F2 = u2 − u1u2 − au2

2 = 0 with �u2 = 0), shown by dashed lines. The system has
four stationary states: at u1 = u2 = 0, unstable, λ1 = λ2 = +1; at u1 = u2 = 1/(1 + a), unstable
(saddle point), λ1 = −1,λ2 = (1 − a)/(1 + a) > 0; at u1 = 1/a, u2 = 0, stable, λ < 0; and at
u2 = 1/a, u1 = 0, stable, λ < 0. The separatrix (separating the basins of attraction) is shown by
the dashed-dotted line (after Chernavsky)

On the other hand, if the starting conditions are symmetrical (the system starts out
on the separatrix), the subsequent evolution is not predetermined and the ultimate
choice of stationary state occurs by chance. Hence, information is generated.18

7.3.3 Habituation

Empirical observation of many systems over time reveals that their responses to
regularly repeated stimuli over time tend to decrease. This is called habituation or,
especially when observed in a living system, fatigue. At the first sight this might
seem paradoxical: it may be supposed that most real systems, of which the example
in Sect. 7.3.1 is a simple illustration, are multistable and, hence, should potentially
display considerable variety of behaviour. The explanation is that no matter how rich
a system may be in states of equilibrium, after a time it will typically be found to
be in a single basin of attraction.19 Although both an initial endowment of potential
variety of behaviour and ultimate stability seem like very necessary attributes for a

18Cf. the discussion in Chap.2.
19See Ashby (1958) for a proof.

http://dx.doi.org/10.1007/978-1-4471-6702-0_2
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cell whose fate is to be a highly differentiated member of an organ, in other cases
(such as an organism considered as a whole) it may be a great handicap. A random
extraneous disturbance (i.e., noise) of sufficient amplitude may suffice to place the
system in a different basin (dehabituation).

7.4 Evolutionary Systems

Equilibrium models, which are traditionally often used to model systems, are char-
acterized by the following assumptions:

1. Entities of a given type are identical, or their characteristics are normally distrib-
uted around a well-defined mean

2. Microscopic events occur at their average rate
3. The system will move rapidly to a stationary (equilibrium) state (this movement

is enhanced if all agents are assumed to perfectly anticipate what the others will
do).

Hence, only simultaneous, not dynamical, equations need be considered, and the
effect of any change can be evaluated by comparing the stationary states before and
after the change.

The next level in sophistication is reached by abandoning assumption 3. Now,
several stationary statesmay be possible, including cyclical and chaotic ones (strange
attractors).

If assumption 2 is abandoned, nonaverage fluctuations are permitted, and the
behaviour becomes much richer. In particular, external noise may allow the system
to cross separatrices. The system is then enabled to adopt new régimes of behaviour,
exploring regions of phase space inaccessible to the lower-level systems,20 which
can be seen as a kind of collective adaptive response (requiring noise) to changing
external conditions.

The fourth and most sophisticated level is achieved by abandoning the remaining
assumption, 1. Local dynamics cause the microdiversity of the entities themselves to
change. Certain attributes may be selected by the system and others may disappear.
These systems are called evolutionary. Their structures reorganize, and the equa-
tions themselves may change. Most natural systems seem to belong to this category.
Rational prediction of their future is extremely difficult.

20This type of behaviour is sometimes called “self-organization”; cf. Érdi and Barna (1984).
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8Algorithms

The concept of algorithm is of central importance, especially for arithmetic, and
even more particularly for operations carried out by mathematical machines such
as digital computers. An algorithm is defined as a process of solving problems based
on repeatedly carrying out a strictly defined procedure. A classical example is the
Euclidean algorithm for finding the greatest common divisor of two natural numbers
a and b.

Example. Suppose a > b; divide a by b to yield either the quotient q1 or the
remainder r2 (if b does not divide a), that is,

a = bq1 + r2 , 0 < r2 < b. (8.1)

Then if r2 �= 0, divide b by r2:

b = r2q2 + r3 , 0 < r3 < r2, (8.2)

and continue by dividing r2 by r3 until the remainder ineluctably becomes zero.
Writing

rn−2 = rn−1qn−1 + rn, (8.3)

rn−1 = rnqn, (8.4)

then it is clear that rn is the greatest common divisor of a and b.

By way of explanation, note that if two integers l and m have a common divisor
d, then for any integers h and k, the number hl + km will also be divisible by d.
Denoting the greatest common divisor of a and b by δ, from Eq. (8.1) it is clear that
δ is a divisor of r2, from Eq. (8.2) it is also a divisor of r3, and from Eq. (8.3) it is
also a divisor of rn , which is itself a common divisor of a and b, since from these
equations it also follows that rn divides rn−1, rn−2, and so forth. Thus δ is identical
with rn , and the problem is solved. This example is a well-defined procedure that
leads automatically to the desired result.

An operation frequently required in bioinformatics is sorting a collection of items
(an array of elements), implying arranging them in increasing (or decreasing) order.
The so-called bubble sort (elements “float” to the top of the array) is considered to be
the simplest algorithm. Each element is compared pairwise to each other. If a pair is
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found to be in the incorrect order, the two elements are interchanged. The algorithm
is based on twoDO-loops (repeat the instructions within the loop for a preset number
of times, or until some condition is fulfilled), one nested inside the other. The outer
loop runs from 1 to 1− (the length of the array), and the inner loop runs from 1+ (a
counter of the outer loop) up to the length of the array.

This sort algorithm is not particularly efficient, in the sense that algorithms requir-
ing fewer instructions to accomplish the same task are available. Often these more
efficient algorithms take more time to program, however. For example, the fast
Fourier transform does indeed require significantly fewer instructions than the ordi-
nary Fourier transform, but nowadays, with the almost universal availability of per-
sonal computers, provided the dataset being transformed is not too large, the extra
work of programming might not be worth the bother. Most personal computers are
switched off at night when they could actually be calculating. The Intel Pentium
chip, introduced around 1996, can carry out 100 million instructions per second
(MIPS); this is 5 times faster than the 486 chip, introduced around 1992, and 100
times more than the mainframe DEC VAX 780, introduced in 1980, and for more
than a decade the workhorse of many computing centres. The DEC PDP1, again
very widely encountered in its day, and introduced around 1960, carries out 0.1
MIPS. IBM’s Deep Blue, also introduced in 1996, can accomplish 106 MIPS. Cur-
rent processors such as the top of the range Intel Core i7 4770k operate at nearly
130,000 MIPS, while the Blue Gene Q supercomputer with thousands of processors
is capable of 20 petaFLOPS (2 × 1016 floating point operations per second which,
depending on architecture, can be many tens of MIPS). When computing jobs were
processed batchwise on a mainframe device there was, of course, strong pressure to
achieve operations such as sorting and matching with as few instructions as possible;
but when the ubiquitous personal computer has 100 times more processing power
than a VAX 780, the effort of achieving it may be considered superfluous by all who
are not professional programmers.

Problem. Write a program to implement the bubble sort algorithm in a high-level
computer language.

Problem. Write an algorithm for searching for all occurrences of a particular word
(a substring) in a string and returning the distance of each occurrence from the start
of the string.

8.1 Evolutionary Computing

Evolutionary computation (EC) is typically fairly informally defined as the field
of computational systems that get inspiration and ideas from natural (Darwinian)
evolution (cf. Sects. 10.9 and 10.9.2). One of the most important types of evolu-
tionary computation is the genetic algorithm (GA), which is a type of search and
optimization based on the mechanisms—albeit rather simplified—of genetics and
natural selection. Each candidate solution is encoded as a numerical string, usually

http://dx.doi.org/10.1007/978-1-4471-6702-0_10
http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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Fig. 8.1 An example of a genetic algorithm. One complete cycle constitutes one generation. Sur-
vival selection strategy determines which offspring, and which parents, are allowed to pass through
to the next generation and which of those are allowed to become parents in the next cycle

binary (of course, unless an analog computer is used, ultimately even a real-valued
string is encoded in binary form for processing on a digital computer). This string
is called the chromosome. A large number of candidate solutions are then “mated”:
in other words, pairs of parents are selected (typically randomly) and the two chro-
mosomes are mixed using operations inspired by those taking place in living cells
(cf. Sect. 10.6), such as recombination (crossover). Random mutations to individual
chromosomes are usually also allowed. The offspring are then evaluated according
to some appropriate fitness criterion and mapped onto a numerical scale. Offspring
with fitness below the threshold are eliminated. In some genetic algorithms, only
the surviving offspring pass on to the next generation and all parents die; in others,
the parents are also evaluated and retained if their fitness exceeds the threshold. The
survivors then undergo another round of randomization and evaluation, and so on
(Fig. 8.1). The cycles continue until a satisfactory solution is reached. The technique
is particularly valuable for multiobjective optimization (MOO). Currently, there is
much activity in the field, albeit dominated by heuristic developments. It is clear that
there are many degrees of freedom available, and it would be impracticable in most
cases to systematically investigate them all. A very promising trend is to allow more
flexibility in the individual steps; ultimately, the algorithm should be able to develop
itself under the constraint of some externally imposed fitness criterion. There is also
a trend to more intensively apply some of the more recent discoveries in molecu-
lar biology to evolutionary computation, especially those regarding the epigenetic
features known to control genome organization (see Sects. 10.8.2 and 10.8.3).

8.2 Pattern Recognition

Ultimately, pattern is a psychological concept: A set of objects fulfilling conditions
of unity and integrity, according to which groups of objects with some common
feature(s) are denoted and perceived (i.e., distinguished from other objects in their
environment) by ahuman being. Pattern is therefore synonymouswith class, category,

http://dx.doi.org/10.1007/978-1-4471-6702-0_10
http://dx.doi.org/10.1007/978-1-4471-6702-0_10
http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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or set. The remark that “a pattern is equivalent to a set of rules1 for recognizing it” is
attributed to Oliver Selfridge. Recognition is the process whereby an unknown object
is attributed to a certain pattern (andhence requires the existence ofmore than one pat-
tern). The attribution level involves comparison of the unknown with known objects
(prototypes). Features can be qualitative or quantitative (measurable); the latter are
required for automated pattern recognition. The ability to select and rank features is
one of the most complex and important processes of the human intellect, and it is
not surprising that it is perhaps the greatest challenge facing completely automated
computer-based systems. At present, features are typically selected by a human.

The basic steps of pattern recognition are as follows:

1. Choice of the initial feature set. The number of features determines the dimen-
sionality of feature space.

2. Measurement of the chosen features of a prototype.
3. Preparation (elimination of excess information—noise),2 resulting in a somewhat

standardized description (a prototype), which is then used to construct the training
set.

4. Construction of the decision-making rule.
5. Comparison of any (typically prepared) unknown object with a prototype; with

the help of a quantitative resemblance measure, a decision is made whether the
unknown object belongs to the pattern.

Pattern recognition is thus seen to be a supervised (i.e., undertaken with a teacher)
learning process. Learning implies that the decision-making rule is modified by
experience. The process of pattern recognition is typically computationally heavy;
thus, in this field there is a strong motivation for finding algorithms that are very
efficient.

The discernment of clumps or clusters of objects according to the features chosen
to represent them transcends the recognition of patterns in the sense of noting the
similarity of a known object to an unknown object. Where data are simply analysed
and clusters are found, this is pattern discovery and is dealt with in the next section.

8.3 Botryology

The term “botryology”, apparently coined by Good (1962), was introduced at a
time when the task of finding clusters was generally focused on objects arranged
in ordinary (Euclidean) space (e.g., stars clustered into galaxies). It signifies a
more general approach to finding clusters or clumps, concerned with logical and

1I.e., an algorithm.
2For example, imagine a typical time-varying signal such as the output of a microphone. This can
be converted to a square wave of uniform amplitude and varying period.
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qualitative relationships, chosen for their relevance to the matter in hand, rather than
with ordinary distance (or a metric satisfying a triangle inequality; see below). Pos-
sibly relevance could be defined according to success in finding clusters or clumps,
hence permitting iterative refinement of the definition.

Since then the notion of clustering has anyway been somewhat generalized, and
typically now includes any process whereby relevance can lead to a numerical
attribute (e.g., the conditional probability of use of an object). The objects are nodes
on a graph (Sect. 7.2), and the links between them (edges) give the relevance. Thus,
an element ai j of the adjacency matrix A gives the relevance of i to j . This may
not be the same as a ji , giving the relevance of j to i ; hence, the graph is a directed
one. On the other hand, association factors such as P(i j)/P(i)P( j) (the probability
of the joint occurrences divided by the product of the probabilities of the separate
occurrences) are symmetrical. The degree of clumpiness of a group of nodes could
then be given by summing the elements of the adjacency matrix of the group and
dividing by the number of elements in the group; a clump could be considered as
complete if the addition of an extra node would bring the clumpiness below some
threshold.

Possibly it is useful to use the term “clustering” for the formal process (which can
be carried out on a computer) described in Sect. 8.3.1 and the term “clumping” for
a more general process (of which clustering would be a subset), for which formal
definitions might not always be available.

It is possible to conceive a highly automated mode of scientific investigation, in
which every object in the universe would be parametrized (by which is meant that
a numerical value is assigned to every attribute). In order to investigate something
more specifically, the researcher would select the relevant collection of objects (e.g.,
“furry mammals”) and apply some kind of dimensional reduction to the dataset (if
the attributes were chosen from some vast standardized set, many would, of course,
have values of zero for a particular collection), preferably down to two or three,3

after which a clustering algorithm would be applied.4

8.3.1 Clustering

Whereas supervised pattern recognition (i.e., with a teacher) corresponds to the most
familiar kind of pattern recognition carried out by human beings throughout their
waking hours (in other words, the comparison of unknown objects with known pro-
totypes), of more current interest in bioinformatics is the unsupervised discernment
of patterns in, for example, gene and genome sequences, especially since the pro-

3E.g., using principal component analysis (PCA) (q.v.).
4See Gorban et al. (2005) for an example.

http://dx.doi.org/10.1007/978-1-4471-6702-0_7


106 8 Algorithms

Fig. 8.2 Each object is represented by a cross corresponding to its value of the chosen feature on
the real line R. Clusters C1, C2, and C3 are easily identifiable. The spot on the line represents a
possible value that could be used to divide the set dichotomously

portion of unknown material in genomes is still overwhelming.5 A very powerful
methodology for achieving that is to examine whether the data resulting from some
operations carried out on a DNA sequence (for example) can be arranged in such a
way that structure appears, namely that groups of data points constituting a subset
of the entire dataset are clumped together to form two or more distinct entities.

The clustering process is defined as the partition of a set of objects by some features
into disjoint subsets, and each subset in which objects are united by some features
is called the cluster. If no relation between the objects is known, it is impossible to
construct clusters.

The simplest case of clustering arises when only one feature exists; each object
under consideration either has the feature or does not, in which case the maximum
number of clusters is two and, if it happens that all the objects have that feature,
then there will be only one cluster. Another simple case arises if values from the
real-number line can be attributed to the feature (Fig. 8.2). This is easily generalized
to two or more dimensions, the number of dimensions being equal to the number of
chosen features.

If the set of objects is large and many features have been chosen, it is necessary
to have algorithms for clustering that enable it to be carried out automatically on
the computer. Many such algorithms are known; a few of them are briefly described
below. It is assumed that there is a set {X} of objects (Xi , etc.) in N -dimensional
feature space. For ease of representation, we will tacitly consider N = 2.

Hyperspheres A circle of radius r is drawn around an arbitrarily chosen object.
Objects within the circle form the first subcluster. New circles are now drawn with
their centres at these other objects, which encompass yet more objects, around which
new circles are again drawn, and so forth until no new objects are added. If all of
the objects in the set are now included, the process has failed. If, on the other hand,
objects remain, then one of those remaining objects is arbitrarily chosen and the
process is repeated.

The radius r must fall between the minimum and maximum distances between
the objects. The larger its value, the fewer will be the number of clusters. Possibly
other criteria are needed to select the most appropriate value (e.g., from some prior

5We also have the intermediate process of semisupervised learning, which deals with the problem
of combining small amounts of labelled data with large amounts of unlabelled data—the classic
paper is Zhu et al. (2003).
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estimation of the likely number of clusters). The method of dynamic kernels is
analogous to hypersphere clustering.

The K -means Method This method originated from the so-called ISODATA (iter-
ative self-organizing data analysis) technique. The centres of K clusters are chosen
simultaneously. Denoting the centre of the kth cluster by Zk , k = 1, K , then for the
process of cluster formation, in particular for the incorporation of any object X into
cluster Ck , we have

X ∈ Ck if ρ(X; Zk) ≤ ρ(X; Zi ) , (8.5)

where k = 1, K , i �= k. In the next step, new centres of gravity for the K subclus-
ters are computed. In the step l, for each new dividing Dl the functional F(Dl) is
computed by the expression

F(Dl) =
∑

X∈Ckl

(X − Zkl)
2 . (8.6)

The optimal division is that for which the function F takes its minimal value. The
process of dividing goes on until for the centres of the next two steps the condition

Zk,l+1 = Zkl (8.7)

is satisfied. The effectiveness of this algorithm depends on the chosen value of K ,
the selection of the initial clustering centres, and the actual location of the points in
feature space corresponding to the objects, which together constitute a significant
weakness of this method.

Distance Metrics The calculation of a distance between any two objects is funda-
mental to clustering. In Euclidean space, the operation is intuitively straightforward,
especially when the positions of each object in space are represented using Cartesian
coordinates. Thus, in one dimension, the distance between two objects at positions
x1 and x2 is simply their difference, |x1− x2|. The procedure is generalized to higher
dimensions using familiar knowledge of coordinate geometry (Pythagoras’ theorem);
thus, for two orthogonal axes x and y, the distance is

√
(x1 − x2)2 + (y1 − y2)2. The

space must be chosen according to relevance. Thus, a collection of trees might be
characterized by height and the mean rate of photosynthesis per unit area of leaf.
Each member of the collection (set) would correspond to a point in this space. An
explicit procedure must be provided for assigning numerical values to these two
parameters. Ex hypothesi, they are considered to be independent; hence, the axes are
orthogonal. Especially when the number of dimensions of the chosen space is high,
it is convenient to reduce it to two, because of the inescapable convenience of repre-
senting data as a picture in two dimensions. For this purpose, principal component
analysis, described in the next Sect. 8.3.2, is a useful method.
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8.3.2 Principal Component and Linear Discriminant Analyses

The underlying concept of principal component analysis (PCA) is that the higher
the variance of a feature, the more information that feature carries. PCA, therefore,
linearly transforms a dataset in order to maximize the retained variance while min-
imizing the number of dimensions used to represent the data, which are projected
onto the lower- (most usefully two-) dimensional space.

The optimal approximation (in the sense of minimizing the least-squares error)
of a D-dimensional random vector x ∈ R

D by a linear combination of D′ < D
independent vectors is achieved by projecting x onto the eigenvectors (called the
principal axes of the data) corresponding to the largest eigenvalues of the covariance
(or scatter)matrix of the data represented byx. The projections are called the principle
components. Typically, it is found that one, two, or three principal axes account for the
overwhelming proportion of the variance; the sought-for reduction of dimensionality
is then achieved by discarding all of the other principal axes.

The weakness of PCA is that there is no guarantee that any clusters (classes) that
may be present in the original data are better separated under the transformation. This
problem is addressed by linear discriminant analysis (LDA), in which a transforma-
tion of x is sought that maximizes intercluster distances (e.g., the variance between
classes) and minimizes intracluster distances (e.g., the variance within classes).

8.3.3 Wavelets

Most readers will be familiar with the representation of arbitrary functions using
Fourier series, namely an infinite sum of sines and cosines (called Fourier basis
functions).6 This work engendered frequency analysis. A Fourier expansion trans-
forms a function from the time domain into the frequency domain. It is especially
appropriate for a periodic function (i.e., one that is localized in frequency), but is
cumbersome for functions that tend to be localized in time. Wavelets, as the name
suggests, integrate to zero and are well localized. They enable complex functions
to be analysed according to scale; as Graps (1995) points out, they enable one to
see “both the forest and the trees”. They are particularly well suited for representing
functions with sharp discontinuities, and they embody what might be called scale
analysis.

The starting point is to adopt a wavelength prototype function (the analysing or
mother wavelet) �(x). Temporal analysis uses a contracted, high-frequency version
of the prototype, and frequency analysis uses a dilated, low-frequency version. The
wavelet basis is

�s,l(x) = 2−s/2�(2−s x − l) , (8.8)

6Fourier’s assertion was that any 2π-periodic function f (x) = a0 + ∑∞
k=1(ak cos kx + bk sin kx).

The coefficients are defined as a0 = (2π)−1
∫ 2π
0 f (x) dx , ak = π−1

∫ 2π
0 f (x) cos(kx) dx , and

bk = π−1
∫ 2π
0 f (x) sin(kx) dx .
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where the variables s (wavelet width) and l (wavelet location) are integers that scale
and dilate � to generate (self-similar) wavelet families. If different resolutions are
required, a scaling function W (x), defined as

W (x) =
N−1∑

k=−1

(−1)kck+1�(2x + k) , (8.9)

is used, where the ck are the wavelet coefficients, which must satisfy the constraints∑N−1
k=0 ck = 2 and

∑N−1
k=0 ckck+2l = 2δl,0, where δ is the delta function.

The wavelet transform is the convolution of signal and basis functions:

F(s, l) =
∫

f (x)�∗
s,l(x) dx (8.10)

where �∗ is the complex conjugate of �. Often, the data can be adequately repre-
sented as a linear combination of wavelet functions, and their coefficients are all that
is required for carrying out further operations on the data.

8.4 Multidimensional Scaling and Seriation

Multidimensional scaling7 (MDS) provides a means of estimating the contents of a
vector space of data from a givenminimum set of input data. The N objects or vectors
under consideration are characterized by a quantity M of parameters common to all
the objects. In estimating the relative values of the parameters for each object, the
original vector space may be reconstructed from N (N/2 − 1) pieces of data; that
is, N × M elements of data are thus recovered. An important application of MDS is
the reconstruction of an original M-dimensional vector space from one-dimensional
distance data between vectors of the space.

Known Data Consider an M-dimensional vector space containing N vectors. The
vectors may be considered as N objects containing M possible parameters or unit
vectors. The objects are then characterized by the scaling of the unit vectors. Suppose
that the only known information concerning the object structure is a distancemeasure
between each of the N objects, given by a symmetric N × N matrix.

Estimating Data For each vector, an M-dimensional initial estimated vector is
formed from a random seed and then propagated iteratively. The propagation is
determined such that each iteration minimizes a stress function (i.e., a normalized
measure of the distance between the distance matrix estimate and the given distance
matrix vectors). Iteration continues until a defined minimum of the stress function is
found; a representation of the original M-dimensional space of N vectors may then
be displayed from the estimated vectors.

7See Kruskal (1964).
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Theory Define the M-dimensional vector space of N objects by the vectors

xi =
M∑

μ=1

biμ ŷμ, (8.11)

where ŷμ are the unit vectors of the space. The Euclidean distances between these
vectors are then given by the N × N distance matrix

Ei j = [(xi − x j )
2]1/2. (8.12)

If only thismatrix is known and not the underlying vectors, then an estimated distance
matrix may be defined:

Ẽi j = [(̃xi − x̃ j )
2]1/2. (8.13)

The estimated vectors may be formed as

x̃i =
M̃∑

μ=1

aiμ ŷμ, (8.14)

where
aiμ = a0iμ + ziμ (8.15)

and a0iμ are initial values selected at random and ziμ are used to propagate the vector
through iteration.

The stress function S is a normalizedmeasure of the distance between the distance
matrix estimate and the given distance matrix vectors:

S2 =
∑N ,N

i, j=1[Ẽi j − Ei j ]2
∑N ,N

i, j=1 Ei j

. (8.16)

This may be minimized by
∂S2

∂zkμ
= 0, (8.17)

but Ei j is constant and given by

B =
N ,N∑

i, j=1

Ei j , (8.18)

so that
∂S2

∂zkμ
= 2B−1

N ,N∑

i, j=1

[Ẽi j − Ei j ] ∂ Ẽi j

∂zkμ
. (8.19)

Using Eq. (8.14) gives

∂ Ẽi j

∂zkμ
= Ẽ−1

i j

M̃∑

ν=1

[aiν − a jν][δikδνμ − δ jkδνμ], (8.20)
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where the Kronecker delta δik , as usual, equals 1 for i = k and 0 for i �= j . Then,
after some algebra,

∂S2

∂zkμ
= 4B−1

N∑

j=1

[Ẽk j − Ekj ]Ẽ−1
k j [akμ − a jμ]. (8.21)

Hence, by integration, the estimated vectors are given by

ẑkμ = zkμ + α
∂S2

∂zkμ
, (8.22)

where ẑkμ is the next iteration, and minimizing the stress function provides the scale
and direction for the propagation, and α provides the iteration increment, typically
fixed as N−3. Iteration continues until the stress function reaches zero or some lower
threshold. Note that the value of M̃ used to reconstruct the vector space need not be
the same as the original space dimension M .

An important application of MDS is to seriation—the correct ordering of an
assembly of objects along one dimension, given merely the presence or absence
a certain number of features in each object.8 These data are arranged in a Boolean
incidence matrix, with the rows corresponding to the objects and the columns to
the features, a “1” corresponding to the presence of a feature in an object. The
characteristic pattern to be expected is that in every column, the 1s are clumped
together, or, if there are multiple representations of features in the objects, in every
column their number increases to a maximum and then decreases. Evidently, this
can be achieved by appropriate rearrangement of the order of the rows. All of the
relevant information is contained in the similarity matrix (in the sense of similar to
the serial ordering), in which the element (i, j) is the number of features common
to the i th and j th objects.

8.5 Visualization

It seems almost impossible to overestimate the power of visualization, as a mode
of knowledge representation, to influence the interpretation of data.9 In this regard,
supremacy belongs to Cartesian coordinates, perhaps the most important mathemat-
ical invention of all time. Two-dimensional representations that can be drawn on
paper (or viewed on a screen) are particularly significant. As already mentioned, one
of the main motivations of PCA (Sect. 8.3.2) is to enable a complex dataset to be rep-
resented on paper. This applies equally well to dynamical representations of evolving

8This was famously applied by Kendall (1970) to the problem of chronology of early Egyptian
tombs found at a certain site. The features in that case are artisanal artefacts characteristic of a
certain epoch found in the tombs.
9Cf. Sect. 22.2.

http://dx.doi.org/10.1007/978-1-4471-6702-0_22
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Fig.8.3 The binary expansion of the first 1600 decimal digits (mod 2) of π (left) and 22/7 (right),
represented as an array of light (0) and dark (1) squares, to be viewed left to right, top to bottom

systems, in which phase portraits (state diagrams in phase space; cf. Fig. 7.3) of a
dynamical system such as a living cell can be very influential.

Another kind of visualization consists in generating images from binary expan-
sions.10 On paper, both the actual decimal digits of the irrational number π and those
of the rational approximation 22/7 look random; when their binary expansions are
drawn as rows of white (corresponding to 0) and black (corresponding to 1) squares,
pattern (or its absence) is immediately discernible (Fig. 8.3).

More generally, visualization should be considered as part of the overall process
of accumulating convincing evidence for the validity of a proposition. It should not,
therefore, be merely an alternative to a written or verbal representation, but should
transcend the limitations of those other types of representation.
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The primary purpose of this and the following two chapters is to give an overview of
living systems, especially directed at the bioinformatician who has previously dealt
purely with the computational aspects of the subject.

Whenever confronting the totality of biology, it is clear that onemay approach it at
various levels, such as molecular, cellular, organismal, populational and ecological.
Traditionally, these levels have been accorded official status by naming academic
departments after them. Just as we saw with the levels of information (technical,
semantic, effective), however, one quickly distorts a vision reflecting reality by insist-
ing on the independence of the levels. For example, it not possible to understand how
populations of organisms evolvewithout consideringwhat is happening to their DNA
molecules. When reading the two following chapters, this interdependence should
constantly be borne in mind.

Problem. Attempt to provide a definition of life. Find exceptions.

9.1 Genotype,Phenotype, and Species

The basic unit of life is the organism. The phenotype may be defined as the organ-
ism interacting with its environment. The genotype may be defined as the set of
instructions for the self-reproduction of the organism and is supposed to be barely
influenced by external conditions.

Those adhering to the primacy of the genome will nevertheless concede that
sending the complete gene sequence of an organism to an alien civilization will not
allow the reconstruction of the organism (i.e., the creation of a living version of
it—i.e. its phenotype). Many things, including the principles of chemical catalysis
necessary for the genetic instructions to be read and processed, are not represented
and are not even implicit in the nucleic acid sequence. In fact, the phenotype is a
composite of explicit and implicit meaning, the latter being context-dependent.
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Table 9.1 Approximate
equivalents of contrasting
concepts

Genotype Phenotype

Genetics Epigenetics

Genome Proteome

Nature Nurture

Gene Environment

Necessity Chance (or freedom)

K I (from Eq. (2.13))

Explicit Implicit

Semantics Syntax

. . . . . .

Itmust also be kept inmind that the processes of natural selection, to be considered
more deeply in Chap.10, operate on the phenotype, yet the vehicle for their persis-
tence is the genotype.

Organisms are commonly characterized as species.Despite the pervasive use of the
term in biology, no entirely satisfactory definition of “species” exists. “Reproductive
isolation” is probably one of the better operational definitions, but it can only apply
under carefully circumscribed conditions. Geographical as well as genetic factors
play a rôle, and epigenetic factors are even more important. In any human settlement
of at least moderate size, there are almost certainly groups of inhabitants with no
social contactwith other groups.Hence, these groups are as effectively reproductively
isolated from each other, because of behavioural patterns, as if they were living on
different continents, and if we apply our definition, we are forced to assert that the
groups belong to different species (even though are all taxonomically classified as
Homo sapiens).

The concept of reproductive isolation is of little use when species reproduce
asexually (such as bacteria); in this case, a criterion based on the possibility of
significant exchange of genetic material with other organisms may have to be used.1

Another difficulty in defining “species” in terms of associating them with
autonomously reproducing DNA is that not only are there well-defined organisms
such as coral or lichen in which two “species” are actually living together in insep-
arable symbiosis, but we ourselves host about 1014 unicellular organisms, mostly
bacteria, which comfortably outnumber the 1013 or so of our own cells.

A very striking characteristic of living organisms is that they are able to maintain
their being in changing surroundings. It is doubtful whether any artificial machine
can survive over as wide a range of conditions as man, for example. “Survival”
means that the essential variables of the organism are maintained within certain
limits. This maintenance (homeostasis) requires regulation of the vital processes.
We shall consider regulation more formally in the following Sect. 9.2.

1See also Sect. 22.3.

http://dx.doi.org/10.1007/978-1-4471-6702-0_2
http://dx.doi.org/10.1007/978-1-4471-6702-0_10
http://dx.doi.org/10.1007/978-1-4471-6702-0_22
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Table9.1 puts some of the terms encountered into a kind of correspondence. It is
not a table of synonyms.

Problem. Discuss and extend Table9.1. Find descriptive headings for the columns.

9.2 Adaptation

It can well be stated that adaptation is perhaps the most characteristic feature of
life. The process of adaptation, so ubiquitous in nature, has been formalized by
Sommerhoff (1950). The “disturbance” (cf. Sect. 9.4) presented at epoch t0 is denoted
the coenetic variable Dt0 , the “hardware” (approximately equivalent to T in Sect. 9.4)
is the environmental circumstance Et1 , the “regulator” (approximately equivalent to
R in Sect. 9.4) is the response Rt1 directively correlated with Et1 , both R and E
taking place at a particular subsequent epoch t1, and the “essential variables” (cf.
Sect. 9.4) constitute the focal condition or goal G of the organism that reaches its
consummation at the still later epoch t2.

The usual notion of adaptedness, as applied to biological systems, implies nomore
than appropriateness. In other words, the statement that an (organic) response R is
adapted to the environmental circumstances E from the viewpoint of some future
state of affairs G (toward the realization of which it is considered to be directed)
implies that the response is appropriate and, hence, also effective in bringing about the
actual (or at least the probable) occurrence of G. However, although this “definition”
of adaptedness is easy to state, it is not only trivial in meaning but is also fraught
with difficulties. For one thing, it does not allow us to prefer the statement “the
fish is adapted to the aquarium in which it survives” to “the aquarium is adapted
to the fish it contains”. Another difficulty is presented by that numerous category
of accidental activity. Many accidental occurrences (including random mutations of
DNA) are highly effective in bringing about a certain response but could hardly be
called adapted; in the case of a random mutation, for example, adaptation could be
said to have occurred only after it had become fixed in the population due to the
advantages it conferred on the organism.

In Sommerhoff’s formulation, adaptation (i.e., the statement that Rt1 is adapted to
Et1 with respect toGt2 )means that if a changeddisturbance Dt0 caused the occurrence
of an alternative member of the set of Es (environmental circumstances), it would
also have caused the occurrence of an alternativemember of the set of Rs (appropriate
responses) such that the goal Gt2 would still have been achieved. In other words, the
response R is not only appropriate given the actual environmental circumstance E
but would also have been appropriate had the initial disturbance D been different. It
should be emphasized that E and R are epistemically independent variables (if they
were dependent, then achievement of the goal would merely be a manifestation of
physical stability). The disturbance D is called the coenetic variable, underlying the
fact that it is a common causal determinant of both E and R. Directive correlation
is this special relationship between E and R (Fig. 9.1). Its existence renders the goal
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Fig.9.1 Directive correlation (after Sommerhoff 1950). The arrows indicate causal connexions. In
this drawing, four correlated variables (E and R) are involved. See the text for explanation of the
symbols

independent of D. Adaptation is thus a tetradic relationship among D (which may be
a prior occurrence of E), E , R, and G. Furthermore, it is not necessary to restrict the
coenetic variable to specific environmental stimuli that evoke an organic response;
it can also be a general factor that determines the specific nature of an action. It may
also be remarked that the general purpose of sensory organs is to establish those
causal connexions that will enable environmental variables to become the coenetic
variables of adapted organic behaviour.

The degree M of directive correlation can be defined as the range of variation
of the coenetic variable over which directive correlation can be maintained, and the
range N of directive correlation can be defined as the number of correlated (E and
R) or coenetic (D) variables involved. The degree is especially important because it
is related to the minimum probability that the goal will be achieved.

9.3 Timescales of Adaptation

One can identify three timescales: proximate (short term, often associated with
behaviour)—such as immediate response to sudden danger (e.g., fleeing from a fire);
ontogenic, or the abilities that accumulate over the lifetime of an individual (medium
term, often associated with learning, or a pattern of behaviour); and phylogenetic,
or the inheritable changed capacities associated with changes in the genome, which
constitute evolution of a species (long term). Proximate adaptation may take place
through themedium of reception of information (e.g., a toxin binding to a cell surface
receptor) followed by appropriate gene expression (cf. Sect. 9.4), but in many animal
responses there is no time even for this, but simply for muscular action. The mech-
anisms for phylogenetic adaptation, involving DNA mutations, are now similarly
well established. It is only in recent years, however, that a considerable repertoire
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of molecular mechanisms for ontogenic adaptation has been discovered, including
the establishment of gene methylation patterns that more or less permanently (unless
there is a drastic change in circumstance) fix which genes are potentially express-
ible in a given cell. The vast accumulation of nongenic (“noncoding”) DNA in most
eukaryotes is no doubt of great value here, permitting the synthesis of small inter-
fering RNAs that gradually build up a repertoire for modulating gene expression
according to the particular circumstances of the individual cell.

This rather clear-cut structure of adaptive timescales is not readily applicable
to prokaryotes. First, their genomes are extremely plastic and can acquire genetic
material from the environment throughout the lifetime of the organism. Second, the
meaning of “lifetime of an individual” is not so clear: When a bacterium divides,
does it really create two equal offspring, simultaneously annihilating itself? Does it
essentially bud off excreta in a less vital, perhaps almost moribund version of the
parent, which thereby gains a new lease of life? Does it gather its vital forces and
concentrate them in a fresh new organism, accepting senescence and death for itself?

9.3.1 The Rôle of Memory

The picturesque idea of human (and, as far as we know, other animals’) memory
as a vast warehouse of facts to be retrieved at will, closely analogous to the digital
memories of modern computers, would appear to be very far from the truth. Man, in
particular, appears to possess immense power of bringing past experience (including
that of fellow members of the species, via written or other records) to bear on the
present situation. In terms of the schemata of Figs. 9.1 and 9.2, this input should be
included in the regulatory response R.

9.3.2 The Integrating Rôle of Directive Correlation

Although the ultimate goal of any organism is survival, the functions of most of the
individual organs are very subordinate to that ultimate goal. The goal of a subordinate
function may simply be the maintenance of the physiological conditions required to

Fig. 9.2 Schematic diagram of a regulatory mechanism. The components are as follows: D, dis-
turbance (from the environment); T, the hardware or the mechanism; R, the regulator; and E, the
essential variables (output). Arrows represent communication channels along which information
passes; those with solid shafts must exist, and those with dashed shafts may exist. See the text for
further explanation
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keep the coenetic variable of a higher function within its maximum permissible
range of variation; in other words, there may be directive correlations of directive
correlations carried on through many levels.

As the range of directive correlation increases, more and more causal connexions
are required. This is particularly apparent when considering coordinated activities.
An action such as running requires the coordination of many muscles; each one must
take account of the others, and all have a common goal. n muscles may therefore
require as many as n2 + n physical interconnexions. If the muscles are physically
distant from each other, the construction and maintenance of these interconnexions
may represent a considerable burden; but if they are concentrated within a nervous
centre, only n afferent and n efferent connexions are required, together with n more
leading to the goal itself; physical economy in the total length of the connexions
provides a natural explanation for the existence of nerve centres.

Clearly, directive correlation is practically synonymous with organic integration,
bringing into connexion (through the objective property of directive correlation)what
would otherwise be independent, disconnected entities.

9.4 Regulation

Regulation may be considered in abstract terms common to anymechanism, whether
living or not. The formalism presented below will be explicitly made use of in
Chap.16 when considering signalling and regulatory pathways.

The essential elements of a regulatory system are shown in Fig. 9.2. The lines con-
necting the components indicate communication channels. The dotted lines indicate
the paths along which the regulator can receive information about the disturbance.
By way of illustration, consider the operation of a simple thermostatted water bath.
T then represents the electric heater and the bath itself with a circulator. E represents
the water temperature (measured with a thermometer) T , R represents the switch
controlling the power supplied to the heater, and D represents the disturbances from
the environment. A typical event is the immersion of a flask containing liquid at a
temperature lower than that of the bath. Sophisticated baths may be able to sense the
temperature and mass of the flask before it has been immersed (channel D → R), or
at the moment of its placement (channel T→ R), but typically the heater is switched
on if the temperature falls below the target value T0 (channel E → R). This is called
regulation by error. Most living cells appear to operate according to this principle.

The canonical representation of the thermostat is

↓ a b
a a

, (9.1)

where state a represents T = T0 (within the allowed uncertainty) and state b repre-
sents T < T0.

In the case of a bacterium, a may, for example, represent [Hg2+] = 0 (square
brackets denoting concentration) and b may represent [Hg2+] > 0. D in Fig. 9.2

http://dx.doi.org/10.1007/978-1-4471-6702-0_16
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now corresponds to mercury ions in the environment of the cell, T corresponds
to the proteins able to sense mercury ions and the gene expression machinery able to
synthesizemercury reductase, andRcorresponds to the transcription factor binding to
the mercury reductase gene promoter sequence. In stochastic matrix representation,
we have

→ a b
a 1 0
b 1 0

. (9.2)

More realistically, however, we might have

→ a b
a 1.0 0.0
b 0.6 0.4

, (9.3)

for example, since, for various reasons, the machinery may not work perfectly. Fur-
ther sophisticationmay be incorporated by increasing the number of states; for exam-
ple, a, b, c, and d corresponding respectively to [Hg2+] = 0, 1nM, 1µM, and 1mM
and above, with the corresponding matrix

→ a b c d
a 1.0 0.0 0.0 0.0
b 0.6 0.4 0.0 0.0
c 0.3 0.4 0.3 0.0
d 0.0 0.3 0.4 0.3

.

After several cycles, the machine will be completely in state a (cf. Sect. 6.2).
In the simplest cases, the error, or a quantity proportional to it, is sent back to

the regulator but, more sophisticatedly, some function of the error—for example,
its integral, or its derivative—could be fed back to R. The vast majority of indus-
trial controllers use a combination of all three (and hence are referred to as PID
controllers).

9.5 The Concept of Machine

“Machine” is used formally to describe the embodiment of a transformation (e.g.,
Eq. (9.1); cf. the automata in Sect. 7.11). The essential feature is that the internal
state of the machine, together with the state of its surroundings, uniquely defines the
next state to which it will go. A determinate machine is canonically represented by a
closed, single-valued transformationEqs. (9.1 and 9.2); aMarkovianmachine is inde-
terminate insofar as the transitions are governed by a stochastic matrix (e.g., Eq.9.3);
the determinate machine is clearly a special case of the more general Markovian
machine.

If there are several possible transformations and a parameter governs which
transformation shall be applied to the internal states of the machine, then we can

http://dx.doi.org/10.1007/978-1-4471-6702-0_6
http://dx.doi.org/10.1007/978-1-4471-6702-0_7


124 9 Introduction to Part II

speak of a machine with input, the input being the parameter. The machine with
input is therefore a transducer (cf. Sect. 3.3).

A Markovian machine with input would be represented by a set of stochastic
matrices together with a parameter to indicate which matrix is to be applied at any
particular step. If these parameters are themselves controlled by a stochastic matrix,
then we have a so-called hidden Markov model (Sect. 13.5.2).

9.6 The Architecture of Functional Systems

Almost any system is confronted with the problem that as its complexity increases,
more andmore channels of communication are required (cf. Sect. 9.3.2), with greater
and greater information capacity, if every component of the system is to remain
fully integrated. A very important way of coping with this problem is to organize
systems hierarchically, such that the amount of information is distributed more or
less uniformly across levels; by this means the information flow within and between
levels remains manageable. One way of quantifying the degree of hierarchicality is
to determine the distribution of path lengths between pairs of components; the closer
it is to a power law distribution, the more hierarchical the system (cf. Chap.7).

As the size of a system (as measured by the number of constituent components)
increases, if every component had to be individually designed and fabricated, the
burden of doing so would soon become overwhelming. In artificial systems, such
as very large-scale integrated circuits, this problem is evaded by a combination of
functional modularity and structural regularity. The latter is anything that reduces
complexity, in the sense already discussed in Sect. 6.5 (e.g., the repetition of compo-
nents). Thus, even themost sophisticated integrated circuits have essentially only two
types of basic components, pMOS (p-type metal–oxide–semiconductor field-effect
transistors) and nMOS (their n-type equivalents).

Functional modularity is the structural localization of function.2 In other words,
some function is separated into structural units (“modules”); these are able to carry
out some information processing internally,which diminishes the amount of informa-
tion that needs to flow between modules (cf. the rôle of nervous centres, Sect. 9.3.2).
It may even arise that design principles developed for modules at one level in a
hierarchy can be reused for modules at other levels. Functional modularity can also
be quantified, provided that function and structure are quantifiable. The dependency
of whole-system function on the components of an arbitrarily chosen piece of the
system can then be measured. The less that dependency itself depends on compo-
nents outside the chosen piece, the more the function of that piece is localized (i.e.,
the more modular it is). If the dependencies are represented as second derivatives of
function with respect to pairs of parameters (the Hessian matrix of fitness), modules

2See Lipson (2007)

http://dx.doi.org/10.1007/978-1-4471-6702-0_3
http://dx.doi.org/10.1007/978-1-4471-6702-0_13
http://dx.doi.org/10.1007/978-1-4471-6702-0_7
http://dx.doi.org/10.1007/978-1-4471-6702-0_6
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can be identified as those collections of parameters that are concentrated around the
diagonal of the matrix.

Problem. Quantify the regularity, modularity, and hierarchicality for a variety of
artificial and natural systems.

9.7 Biological Complexity

It has long been a tenet of biology that there has been a gradual increase in phenotypic
complexity during the history of life on Earth;3 it is “what everybody knows”,4

although hard evidence has been remarkably difficult to come by, not least because of
a lack of consensus regarding an appropriate definition of complexity (cf. Sect. 6.5).
Some of the most convincing, albeit narrowly focused, evidence thereof has come
from the painstaking study of the evolution of ammonoid sutures (Fig. 9.3; see also
Boyajian and Lutz 1992), which rather convincingly reveals a gradual increase of
complexity followed by degeneration (simplification) preceding extinction.

More recent and comprehensively quantitative work has explored the hypothesis
that the accumulation of mildly deleterious mutations—which occurs according to
Kimura’s theory—leads to secondary selection for protein–protein interactions sta-
bilizing key gene functions in small populations.5 The argument of this work is that
neutral drift of the genome and, in consequence, of the proteome leads to less sta-
ble proteins because of the occurrence of dehydrons (Sect. 11.5.2). The interactome
(Chap.16) is then developed to restore stability, which leads to the epiphenomenon
of complexity. Lest it be thought that complexity is automatically a beneficial evo-
lutionary trait, it should be pointed out that the prevalence of dehydrons in complex
organisms such as ourselves leads to diseases due to unwanted protein aggregation
such as Alzheimer’s and is likely to increase the likelihood of aneuploidy and can-
cer. On the other hand this complexity appears to have been a prerequisite for the
emergence of our brains with the concomitant ability to reflect on these matters and
even, perhaps, find ways of overcoming the physiological drawbacks.

3E.g., Lynch (2007).
4McShea (1991).
5See Fernández and Lynch (2011) for full details.

http://dx.doi.org/10.1007/978-1-4471-6702-0_6
http://dx.doi.org/10.1007/978-1-4471-6702-0_11
http://dx.doi.org/10.1007/978-1-4471-6702-0_16
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Fig. 9.3 Ammonites (Ptyichites) opulentus (Mojsisovich), showing the complex sutures. Figure5
from Plate 44 in E. Haeckel, Kunstformen der Natur (1. Sammlung). Leipzig: Verlag des Bibli-
ographischen Instituts (1904). A collection of ammonoid fossils showing the increase and decrease
of suture complexity can be viewed at the Musée cantonal de zoologie, Palais de Rumine, Lausanne
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9.8 Self-Organization

The concept of self-organization appears to have originated with Immanuel Kant. In
Sect. 65 of his Kritik der Urteilskraft (1790),6 we read “In einem solchen Produkte
der Natur wird ein jeder Teil, so wie er nur durch alle übrigen da ist, auch als um
der anderen und das Ganzen willen existierend, d.i. als Werkzeug (Organ) gedacht;
welches aber nicht genug ist (denn er könnte auchWerkzeug derKunst sein und so nur
als Zweck überhaupt möglich vorgestellt werden), sondern als ein die anderen Teile
(folglich jeder den anderen wechselseitig) hervorbringendes Organ, dergleichen kein
Werkzeug der Kunst, sondern nur der allen Stoff zu Werkzeugen (selbst denen der
Kunst) liefernden Natur sein kann; und nur dann und darumwird ein solches Produkt
als organisiertes und sich selbst organisierendes Wesen ein Naturzweck genannt
werden können”. The emphases, given by the author, seem to indicate his own feeling
of the importance of this statement. As for the idea that a living organism is both
cause and effect of itself, that is to be found in the preceding Sect. 64: “Ich würde
vorläufig sagen: ein Ding existiert als Naturzweck, wenn es von sich selbst Ursache
und Wirkung ist . . . .” Note Kant’s caution in putting this forward as a provisional
idea. Little, if anything, seems to have been added by the latterly often cited work
of Maturana and Varela who introduced the term “autopoiesis”; they seem rather to
have rendered a clear enough conception recondite. More constructive was the term
“homeostasis” introduced by Cannon in the 1920s, and which became incorporated
into Ashby’s cybernetics (Sect. 9.4). Nevertheless, let us be mindful of Ashby’s and
von Foerster’s critiques of self-organization (see footnote 25 in Sect. 2.4).

9.9 Cybernetics

In its modern incarnation, cybernetics was, initially, the study of control and commu-
nication within machines (considered as information processors, hence in this sense
also encompassing living organisms), with the machine considered as an entity inde-
pendent from the observer. Perhaps from the influence of quantummechanics and its
concept of the absolutely small quantum being irremeably perturbed by the observer,
cyberneticians realized that they also needed to explicitly encompass the observer,
and this extension of the earlier idea became known as “second-order cybernetics”,
or “cybernetics of cybernetics”.

Chailakhian (2005) has pointed out the inevitability of “bioinformatics” becoming
synonymous with “cybernetics” and it would be artificial to deny it. It is a curiosum
that physiology still focuses on exchanges of energy rather than exchanges of infor-
mation, although with the recognition of the importance of signalling within and
between cells this is slowly changing. This synonymity vastly expands the scope of
bioinformatics beyond genomics, especially when considering that control systems

6Quotations are taken from the third edition (Kant 1799).

http://dx.doi.org/10.1007/978-1-4471-6702-0_2
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are arranged hierarchically. “Survival” (Sect. 9.1) is a rather high level “goal”. The
action of breathing is quite central to it, but this implies not only operation of the
autonomic and somatic nervous systems, but also whatever is needed to ensure that
one is in a place where clean, respirable air is available, which itself implies myriads
of actions, including some at the highest level of organization of society.

Problem. Construct a concrete example of a hierarchical control system.
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Figure10.1 shows, in highly compressed and schematic form, the major processes
taking place within living beings. The first priority of any living being is simply to
survive. In the language of Sect. 9.4, the being must maintain its essential variables
within the range corresponding to life. In succint form, “to be or not to be—that is
the question.”

The biosynthetic processes of life maintenance, indicated at the bottom of
Fig. 10.1, lead beyond the living part of the organism to produce external structures,
like exoskeletons and shells, which are sometimes gigantic, such as coral reefs, giant
redwood tree trunks, guano hills, and, indeed, beaver dams and buildings of human
construction.

Bioinformatics is particularly concerned with the processes of information flow
(cf. the “central dogma”); that is,d, e, f inFig. 10.1, and regulationof thoseprocesses
(g, h, i). Nevertheless, any student of bioinformatics should have some grasp of the
overall picture, which this chapter sets out to give.

The simplest organisms are single cells, slightly more elaborate organisms such as
sponges consist of aggregates of cells constrained to live together, andmore complex
organisms are highly constrained assemblies of cells.

10.1 The Cell

The basic unit of life is the cell. Many organisms consist of only one cell. There-
fore, even a single cell carries all that is needed for life. The cell contains the DNA
coding for proteins and all the machinery necessary for maintaining life—enzymes,
multiprotein complexes, and so forth. The body of the cell, the cytoplasm, is a thick,
viscous aqueous medium full of macromolecules. If intact cells are centrifuged, one
can separate a fairly fluid fraction, which contains very little apart from a few ions
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Fig. 10.1 Schematic diagram of the major relations in living organisms. The innermost zone con-
cerns processes taking place within the cell. The upper portion indicates processes (a, b) involved in
multiplication (reproduction); the lower portion indicates processes (k, l, m) involved in life main-
tenance (homeostasis). The curved arrowsmoving upward in the central region on the left-hand side
indicate processes (p, q, r) of synthesis; those on the right-hand side (g, h, i, j) indicate processes
of regulation. Exchange with the environment (input and output) takes place: Inputs n1, n2, and n3

could be, respectively, cosmic rays causing DNA mutations, toxicants interfering with the regula-
tion of transcription and translation, and food. s indicates specific molecular factors ingested from
the environment, such as folic acid providing a source of methyl groups for DNA methylation. The
successive generations (c) are, of course, released into the environment. Secretion (o) includes not
only waste products but also highly specific molecules for altering a surface in the vicinity of an
organism, or its outer shell (the set of secreted molecules other than waste is called the secretome)

and small osmolytes like sugars.1 The proteins and the rest that are usually called
“cytoplasmic” are mostly bound to macromolecular constructs such as the inner
surface of the outer lipid membrane, internal membranes such as the endoplasmic
reticulum, other polymers such as various filaments (the cytoskeleton) made from
proteins such as actin or tubulin, or polysaccharides. These bound proteins can only
be released if the ultrastructure of the cell is completely disrupted (e.g., by mechan-
ically crushing it in a cylinder in which a tightly fitting piston moves); the results
obtained from fractionating such homogenates give a quite misleading impression
of the constitution of a living cell.

1Kempner and Miller (1968).
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The cell membrane (also called “plasma membrane” or “plasmalemma”), often
described as a robust and fairly impermeable coating around the cytoplasm, has a
function that, strictly speaking, remains somewhatmysterious, sincemodern, and not
so modern, research has shown that cells remain viable even when their membranes
are significantly disrupted. The image of a cell as a toy balloon filled with salt
solution, which would immediately spurt out if the balloon were punctured, is not in
agreement with the experimental facts.2

10.1.1 The Structure of a Cell

The two great divisions of cell types are the prokaryotes (bacteria and archaeae) and
the eukaryotes (protozoa, fungi, plants, and animals) (see Sect.10.9.5). As the name
suggests, the eukaryotes possess a definite nucleus containing the genetic material
(DNA), which is separated from the rest of the cell by a lipid-based membrane,
whereas the prokaryotes do not have this internal compartmentation. Moreover, the
eukaryotes possess other internal compartments known as organelles: the mitochon-
dria, sites of oxidative reactions where food is metabolized; chloroplasts (only in
plants), sites of photosynthesis; lysosomes, sacs of digestive enzymes for decom-
posing large molecules; the endoplasmic reticulum, a highly folded and convoluted
lipid membrane structure to which the ribosomes (RNA-protein complexes respon-
sible for protein synthesis from mRNA templates) are attached, and contiguous with
the Golgi body, responsible for other membrane operations such as packaging pro-
teins for excretion to outside the cell; and so on.

10.2 Mitochondria

The mitochondria and chloroplasts possess their own DNA, which codes for some,
but not all of their proteins; they are believed to be vestiges of formerly symbi-
otic prokaryotes living within the larger eukaryotes. The present interrelationship
between cell and mitochondrion is highly convoluted. The yeast mitochondrion, for
example, has about 750 proteins, of which only 8 are templated by the mitochondrial
genome, the remainder coming from the principal genome of the cell.

Mitochondria can undergo fusion and fission; dysfunction in these processes can
lead to debilitating disease. Neurons seem to be particularly susceptible to mitochon-
drial dysfunction. Fusion is one way to rescue mitochondrial material that has lost
function, and fission followed by elimination of the fragments is a way to eliminate
irreparably damaged mitochondria.3

2See Kellermayer et al. (1986).
3Chan (2006) and Westermann (2010) are useful reviews.
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10.2.1 Observational Overview

The optical microscope can resolve objects down to a few hundred nanometres in
size.4 This is sufficient for revealing the existence of individual cells (Hooke 1665)
and some of the larger organelles (subcellular organs) present in eukaryotes. The
contrast of most of this internal structure is low, however, and stains must be applied
in order to clearly reveal them. Thus, the nucleus, chromosomes, mitochondria,
chloroplasts, and so on can be discerned, even though their internal structure can
not. The electron microscope, capable of resolving structures down to subnanometre
resolution, has vastly increased our knowledge of the cell, although it must always
be borne in mind that the price of achieving this resolution is that the cell has to
be killed, sectioned, dehydrated or frozen, and stained or fixed—procedures that are
likely to alter many of the structures from their living state.5 Mainly through elec-
tron microscopy, a large number of intracellular structures, such as microfilaments,
microtubules, endoplasmic reticulum, Golgi bodies, lysosomes, peroxysomes, and
so on acquired something apparently more substantial than their previous somewhat
shadowy existence.

If cells are mechanically homogenized, different fractions can be separated in the
centrifuge: lipidmembrane fragments, nucleic acids, proteins, polysaccharides, and a
clear, mobile aqueous supernatant containing small ions and osmolytes. It should not
be supposed that this supernatant is representative of the cytosol, the term applied to
the medium surrounding the subcellular structures; centrifugation of intact cells (the
experiments of Kempner and Miller 1968) removes practically all macromolecules
along with the lipid-based structures. That experiment was done relatively late in
the development of biochemistry, after the misconception that the cytosol was filled
with soluble enzymes had already become established. Most proteins are attached
to membranes, and the cytosol is a highly crowded, viscous hydrogel.6

Lipid membranes occupy a very important place in the cell. Most of the organelles
are membrane-bounded, and their surfaces are the sites of most enzyme activity.
Chloroplasts are virtually filled with internal membranes. Curiously, the most promi-
nent membrane of all, the one which surrounds the cell, has, even today, a rather
obscure function; for example, it is often asserted that it is needed to control ion fluxes

4According to Abbe’s law, the resolution �x = λ/2(N.A.), where λ is the wavelength of the illu-
minating light and N.A. is the numerical aperture of the microscope condenser. This barrier has now
been broken by some remarkable new techniques developed by S.W. Hell, notably stimulated emis-
sion depletion (STED) and ground state depletion (GSD)microscopies, based on reversible saturated
optical fluorescence transitions (RESOLFT) between two states of a fluorescent marker, typically a
dye introduced into the living cell. The resolution is approximately given by �xAbbe/

√
1 + I/Isat ,

where I is the actual illuminating irradiance and Isat is the irradiance needed to saturate the transi-
tion.
5See Hillman (1991) for an extended discussion.
6See Ellis (2001).
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into and out of the cell but, experimentally, potassium flux is much less affected by
removal of the membrane than one might suppose (see footnote 2).7

Although prokaryotes (which are typically much smaller than eukaryotes) lack
most of the internal membrane-based structure seen in eukaryotes, they are still
highly heterogeneous in terms of the nonuniform distributions of components, from
macromolecules down to small ions.

If they are tagged (by synthesizing them with unusual isotopes, or attaching a flu-
orescent label or a nanoparticle), individual molecules, or small groups of molecules,
can be localized in the cell, by spatially resolved secondary ion mass spectrometry
(SIMS), fluorescence microscopy, and so forth. These measurements can usually
be carried out with fair time resolution (milliseconds to seconds); hence, both local
concentrations and fluxes of the tagged molecules can be determined.

Spontaneous assembly. Take the isolated constituents (e.g., head, neck, legs) of
a phage virus, mix them together, and a functional virus will result.8 This exercise
cannot be repeated successfully with larger, more complex structures closer to that
state we call “living.” Nor does it work if we break down the phage constituents into
individual molecules.

10.3 Metabolism

The fundamental purpose of metabolism is to provide energy for survival (thinking,
mobility, repair) and components for growth (including the production of offspring).
It may be defined as the set of chemical reactions needed to maintain life—to grow,
reproduce, repair, and respond (adapt). Traditionally, it is subdivided into catabolism,
concerned with breaking large, usually polymeric, molecules imported as food from
the external world into the cell down into monomers and submonomeric components
in order to provide energy, and anabolism, concerned with building up large mole-
cules and supramolecular structures. Metabolism is largely carried on by enzymes
and coenzymes, the latter being molecules auxiliary to enzyme action that transfer
chemical functional groups (e.g., NAD+/NADH).

Digestion is typically carried out extracellularly (in the mouth, stomach and gut—
the gastro-intestinal tract) and breaks macromolecular food (proteins, polysaccha-
rides, fats) into oligomers that can be imported into the cell. The fundamental process
of carbohydrate catabolism is glycolysis, which yields an intermediate molecule
called pyruvate (C3H4O3). Glycolysis is a principal energy source for prokaryotes
and eukaryotes lackingmitochondria (e.g., erythrocytes).Withinmitochondria, pyru-
vate is further broken down into acetyl coenzyme A (acetylcoA), which undergoes
final decomposition in the citric acid (or tricarboxylic or Krebs) cycle, yielding two
molecules of ATP (from ADP), one CO2, and one NADH (from NAD+). Oxygen

7Solomon (1960).
8See Kellenberger (1972) for a review.
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is then used to regenerate the NAD+ and a further molecule of ATP from ADP,
together with a proton that is pumped outside the mitochondrion. The resulting pro-
ton electrochemical potential gradient across the mitochondrial membrane (“proton-
motive force”, p.m.f.) drives ATP synthase upon relaxation. This is called oxidative
phosphorylation (respiration). It uses an exogenous electron acceptor (oxygen) to
generate significant quantities of stored chemical potential (“energy”; more than 20
molecules of ATP per glucose molecule). Fermentation is an anaerobic process for
further oxidizing pyruvate using an endogenous electron acceptor such as some other
organic compound (lithotrophs use minerals), which yields much less stored chem-
ical potential per glucose molecule than oxidative phosphorylation, perhaps only
one-twentieth as much, depending on the final products. Photosynthetic organisms
use light to reduce water to oxygen and develop a p.m.f. that is a similarly used to
drive ATP synthesis across the thylakoid membrane.

Autotrophs such as plants can use the smallest carbon building block, namelyCO2,
for anabolism, whereas heterotrophs use monomers for building up their catalytic
and structural polymers.

Biological reactions, especially those in vivo within a cell, typically take place in
very confined volumes. This confinement may have a profound effect on the kinetic

mass action law (KMAL). Consider the reaction A + B
ka→ C, which Rényi (1953)

has analysed in detail. We have

dc

dt
= ka[āb̄ + �2(γt )] = kaab , (10.1)

where lower case symbols denote concentrations, bars denote expected numbers,
and γt is the number of C molecules created up to time t . The term �2(γt ) expresses

the fluctuations in γt : γ 2
t = γt

2 + �2(γt ). Supposing that γt approximates to a
Poisson distribution, then �2(γt ) will be of the same order of magnitude as γt .
The KMAL, which puts ā = a0 − c(t), and so on, the subscript 0 denoting initial
concentration (at t = 0), is a first approximation in which �2(γt ) is supposed
negligibly small compared to ā and b̄, implying that āb̄ = ab, whereas, strictly
speaking, it is not since a and b are not independent: the disappearance of A at a
certain spot (i.e., its transformation into C) implies the simultaneous disappearance
of B. The neglect of �2(γt ) is justified for molar quantities of starting reagents,9 but
not for reactions in minute subcellular compartments. The number fluctuations (i.e.,
the �2(γt ) term) will constantly tend to be eliminated by diffusion. This generally
dominates in macroscopic systems. When diffusion is hindered, however, because
of the correlation between a and b, initial inhomogeneities in their spatial densities
lead to the development of zones enriched in either one or the other faster than the
enrichment can be eliminated by diffusion.

Problem. What fundamental limitations do small systems place on biological
processes such as gene regulation?

9Except near the end of the process, when ā and b̄ become very small.
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10.4 The Cell Cycle

Just as exponential decay is an archetypical feature of radioactivity, so is exponential
growth an archetypical feature of the observable characteristics of life. If a single
bacterium is placed in a rich nutrient medium, after a while (as little as 20 minutes in
the case of Escherichia coli) two bacteria will be observed; after another 20 minutes,
four, and so on; that is, the number n of bacteria increases with time t as et (cf.
Eq. 7.4).

Actually, exponential growth, as known to occur under laboratory conditions, is
not very common in nature. The vast majority of bacteria in soils and sediments live
a quiet, almost moribund existence, due to the scarcity of nutrients. Under transiently
favourable conditions, growth might start out exponentially but would then level off
as nutrients became exhausted (cf. Eq.7.5).

Bacteria “multiply by division.” Since the average size of each individual bac-
terium remains roughly constant averaged over long intervals,10 what actually hap-
pens is that the first bacterium increases in size and then divides into two. In general,
the division does not appear to be symmetrical11—in other words, to express the
result of the division as “two daughter cells” may not be accurate; there is a mother
and daughter, and they are not equivalent.12

During the growth process, most of the molecules of the cell are increasing (in
number) pro rata with overall cell size (mass), including the cell’s gene, a circle of
double-stranded DNA. Once the gene has been duplicated, the rest of the material
can be divided, and growth starts again. The process has a cyclic nature and is called
the cell cycle (Fig. 10.2).

The defining events are: the initiation of chromosome replication; chromosome
segregation; cell division; and inactivation of the replicationmachinery. The duration
of one cycle can vary by many orders of magnitude: 20 minutes for E. coli grown
in the laboratory, to several years for the bacteria believed to live in deep ocean
sediments. Typically, fully differentiated cells never divide.

The successive steps of the cell cycle appear to be tightly controlled and, if the
control goes awry, damage and subsequent developmental abnormalities such as the
formation of tumours may ensue. Control takes place principally at the checkpoints
(corresponding to the boundaries separating the phases; Fig. 10.2) at which inter-
vention is possible. Proteins called cyclins are synthesized just before each check-
point is reached. They activate kinases that, in turn, phosphorylate other proteins

10E.g., Wakamoto et al. (2005).
11See Lechler and Fuchs (2005).
12The events of growth and division are not really akin to printing multiple copies of a book, or
photocopying pages. It is not, strictly speaking, correct to call the process whereby adult organisms
create new organisms—offspring—“reproduction”: Parents do not reproduce themselves when they
make a baby; even when the baby is grown up, it might be quite different, in appearance and
behaviour, from its progenitors. In a literary analogy, this kind of process is akin to writing a
new book (a derivative work) by gathering material from primary sources, or previously existing
secondary sources.

http://dx.doi.org/10.1007/978-1-4471-6702-0_7
http://dx.doi.org/10.1007/978-1-4471-6702-0_7
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Fig.10.2 Schematic diagram of the cell cycle. The successive epochs are known as phases. Areas
of the sectors are proportional to the typical duration of each phase, which succeed each other in a
clockwise direction. A newly born cell starts in the so-called G1 phase. When it reaches a certain
size (the molecular nature of the initiating signal is not known, but it is correlated with size) DNA
synthesis begins; that is, the gene is duplicated. Mitosis (see below) takes place in the M phase. See
also Table10.1

(“cyclin-dependent kinases” (CDK), cf. Sect. 14.7) that carry out the necessary reac-
tions to enable the cell to pass into the next phase, whereupon the cyclins are abruptly
destroyed.

Apart from duplicating its DNA and dividing, the cell also has to metabolize food
(to provide energy for its other activities, which may include secreting certain sub-
stances, or simply playing a structural rôle) and neutralize external threats such as
viruses, toxins and changes in temperature. All of these activities, including gene
duplication, require enzymes, and enzymes for translating andmodifying the nucleic
acid genetic material, whose fabrication also requires energy. There is also a consid-
erable amount of degradation activity (i.e., proteolysis of enzymes and other proteins
after they have carried out their specific function).13 Degradation itself, of course,
requires enzymes to carry it out. In eukaryotes, most proteins are marked for degra-
dation by being covalently bound to one or more copies of the polypeptide ubiquitin.
This facilitates their recognition by a huge (Mr ∼ 106) multiprotein complex called
the proteasome, which carries out proteolysis into peptides, which may be presented
to the immune system, and ultimately to amino acids.

13A good example of a protein subjected to degradation is cyclin, which has the regulatory function
mentioned above and whose concentration rises and then falls during mitosis.

http://dx.doi.org/10.1007/978-1-4471-6702-0_14
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10.4.1 The Chromosome

In eukaryotes, the nucleic acid is present as long linear segments (each containing
thousands of genes) called chromosomes, because they can be coloured (stained)
and hence rendered visible in the optical microscope during cell division.

Chromosomes are terminated by telomeres. The telomere is a stretch of highly
repetitive DNA. Since during chromosome replication (see below) the DNA poly-
merase complex typically stops several hundred bases before the end, telomeres
prevent the loss of possibly useful genetic information.

Germline cells are haploid; that is, they contain one set of genes (like bacte-
ria). When male and female gametes (eukaryotic germline cells) fuse together, the
zygote, the single-celled progenitor of the adult organism, therefore contains two sets
of genes (i.e., two double helices), one from the male parent and one from the female
parent. This state is called diploid. The normal descendents of the zygote, produced
by mitosis, remain diploid. Many plants, and a few animals, have more than two
sets of genes (four = tetraploid, many = polyploid), widening the possibilities for
the regulation of gene expression. Polyploidy is a macromutation that greatly alters
the biochemical, physiological, and developmental characteristics of organisms. It
may confer advantageous tolerance to environmental exigency (especially impor-
tant to plants (Sect. 20.2) because of their immobility) and open new developmental
pathways. Cancers are characterized by aneuploidy, which, typically, leads to unpre-
dictable further development.The unpredictability is autocatalytic, since once entire
chromosomes are missing or duplicated, there is a chance at some of the machinery
for copying the DNA is affected (cf. Sect. 10.6.3).

The two (or more) forms of the same gene are called alleles. The inheritance
of unlinked genes (i.e., genes on different chromosomes; genetic linkage refers to
the association of genes by virtue of their being located on the same chromosome)
follows Mendel’s laws.14 If, for a given gene, two alleles are known, denoted A and
a, occurring with probabilities p and 1− p = q , respectively, there are three possible
genotypes in the population (AA, Aa, and aa), with probabilities of occurrence of
p2, 2pq , and q2, respectively (this is the Hardy–Weinberg rule). The Aa genotype
is called heterozygous (the two parental alleles of a gene are different).

The union of a maternal and a paternal gene is typical of eukaryotes, a corollary
of which is that siblings share half their genes with each other. The social insects
are an important (recall that ants may comprise about a quarter of the animal mass
on earth) exception. The queen is only fertilized once in her lifetime, storing the
sperm in her body. She lays two kinds of eggs: fertilized with the stored sperm just
before laying, and which become females; and unfertilized, which become males.
The males therefore have only one set of chromosomes (i.e., they are haploid); in a

141. Phenotypical characters depend on genes. Each gene can vary, the ensemble of variants being
known as alleles. In species reproducing sexually, each new individual receives one allele from the
father and one from the mother. 2. When an individual reproduces, it transmits to each offspring
the paternal allele with probability 1/2 and the maternal allele with probability 1/2. 3. The actual
transmission events are independent for each independently conceived offspring.

http://dx.doi.org/10.1007/978-1-4471-6702-0_20
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Table 10.1 Successive events in the eukaryotic cell cycle

Phasea Process Feature(s)

M Prophase Chromosome condensation

M Metaphase Centrosomes separate and form two asteriated poles at
opposite ends of the cell

M Prometaphase The nuclear envelopeb is degraded, microtubules from
the centrosomes seek the chromosomes

M Metaphase Microtubules from the centrosomes find the
chromosomes

M Anaphase A The two arms of each chromosome are separated and
drawn toward the centrosomes

M Anaphase B Centrosomes move further away from each other
together with their half-chromosomes

M Telophase The cell divides

G1 Decondensation Chromosomes disappear, nuclear envelope reforms
around the DNA, microtubules reappear throughout the
cytoplasm

S Interphase Cell growth

G2c Interphase DNA duplication
aSee Fig. 10.2
bThe nuclear envelope is a bilayer lipid membrane in which proteins are embedded
cMitosis (see Sect. 10.4.1) is considered to begin at the end of G2 and last until the beginning of G1

certain sense, the males have no father. Hence, they transmit all their genes to their
progeny, which are invariably female. In consequence, sisters share three-quarters
of their genes with each other, but they only have a quarter of their genes in common
with their brothers.15

Mitosis

The simple process of gene replication is called mitosis. This is the type of cell
division that produces two genetically identical (in theory) cells from a single parent
cell. It applies to bacteria and to the somatic (body) cells of eukaryotes.

Prior to division, homologous pairs (of the maternal and corresponding pater-
nal genes for each chromosome) form. They are attached at one zone, near the
centre of the chromosome, by a large multiprotein complex called the centromere.
The attached chromosomes then compactify, forming the characteristic “X”-shaped
structures easily seen in the optical microscope after staining. The remainder of the
process is described in Table10.1.

15This fact is used to “explain” social insect behaviour.
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Meiosis

Meiosis is a more complex process than mitosis. It starts with an ordinary diploid
cell and leads to the formation of gametes (germline cells).

First, the two chromosomes (paternal and maternal) are duplicated (as in mitosis)
to produce four double helices. Then the four double helices come into close prox-
imity and recombination (see below) is possible. Thereupon the cell divides without
further DNA replication. The chromosomes are segregated; hence, each cell contains
two double helices (diploid). A given double helix may have sections from the father
and from the mother. Finally, there is a further division without further DNA repli-
cation. Each cell contains one double helix (haploid). They are the gametes (germ
cells).

Differences Between Prokaryotes and Eukaryotes (1)

Prokaryotes undergo neither meiosis nor mitosis (their DNA is segregated as it repli-
cates), their chromosomes are not organized into chromatin (although there is a region
called the nucleoid in which the genetic material is concentrated), nor does the DNA
spend much of its time inside a special compartment, the nucleus (although the chro-
mosome is usually visible as the nucleoid). Chromosome replication typically starts
from a single site in prokaryotes (the origin of replication, ori, which may comprise
a few hundred bases) but from many sites (thousands) in eukaryotes—otherwise
replication, proceeding at about 50 bases per second, would take far too long. As it
is, the human genome takes about 8h to be replicated. Prokaryotic DNA is circular
(and hence does not require telomeres),16 whereas eukaryotic DNA is linear.

Differences Between Protozoans and Metazoans

In a single-celled protozoan, the germline is the soma (body). The metazoan is quite
different because its germline (a single cell) must divide and multiply in order to
create the soma. All cells have the same genes (with some specialized exceptions,
such as in the cells of the immune system; cf. Sect. 10.5). Typically, methylation of
the DNA determines which genes are expressed; in the germ cell, only “master con-
trol genes” are unmethylated; these control the demethylases, which progressively
allow other genes to be expressed. As a rule, this development takes place under
much more strongly constrained environmental conditions than those that the fully
developed (adult) organism might expect to encounter. Imprinted genes are those
whose expression is determined by their parental origin, typically according to the
genes’ methylation states (see Sect. 10.7.4).

16There are some exceptions; for example, Streptomyces coelicolor has a linear genome.
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10.4.2 The Structures of Genome and Genes

Definition. Wemay provisionally define gene as a stretch of DNA that codes for (i.e.,
is translated into—see Sect. 10.7) a protein. Due to ever more detailed molecular
knowledge, it has become difficult to define “gene” unambiguously. Formerly, the
term “cistron” was used to denote the genetic unit of function corresponding to
one polypeptide chain; the discovery of introns (see below) signified the end of the
“one gene, one enzyme” idea; furthermore, operons group together several proteins
with a common function—are they then to be regarded as a single gene? The genon
concept (see below) may provide a way of reconciling the classical view of a gene as
a function and the molecular biological view of the gene as a coding sequence (with
the ambiguity of whether to include sequences involved in regulating expression).

Definition. The genon has been introduced by Scherrer and Jost (2007) in an attempt
to delineate an object that can be defined unambiguously. The genon is defined as
the coding sequence (which can then revert to being called “gene,” akin to the sense
of cistron, but better (less ambiguously) expressed in terms of the mRNA that is
translated into a protein) together with the additional information that is needed to
fully express the coding sequence. The genon is therefore more akin to a program
that results in a functionally active gene product. The coding sequence together
with its promoter is called the protogenon, and the primary transcript is called the
pregenon. These are comprised within the cisgenon, together with RNA and proteins
necessary for expression. Once the protein is produced, we move into the domain of
the transgenon, which finally denotes the working protein delivered at a particular
time to a particular place in the cytoplasm. Doubtlessly, this concept will be further
refined and its operational implications more fully explored.

Definition. The genome is defined as the entire set of genes in the cell. Intergenomic
sequences and introns (a term suggested by Walter Gilbert in 1978, signifying intra-
genic sequences) were not known when the word was coined. Therefore it is usually
taken to mean all inheritable polymerized nucleic acids, regardless of their coding
or other function.

The most basic genome parameter is the the number of bases (base pairs, since
most genetic DNA is double stranded). Sometimes the molecular weight of the DNA
is given (the average molecular weight of the four base pairs is 660). Table10.2 gives
the sizes of the genomes of some representative organisms.

Differences Between Prokaryotes and Eukaryotes (2)

Bacterial genomes consist of blocks of genes preceded by regulatory (promoter)
sequences. Eukaryotic DNA resembles a mosaic of the following: genes (segments
whose sequence codes for amino acids, also called exons, from expressed, or “coding
DNA”); segments (called introns) that are transcribed into RNA, but then excised to
leave the final mRNA used as the template for producing the protein; many genes
are split into a dozen or more segments, which can be spliced in different ways to
generate variant proteins after translation; promoters (short regions of DNA to which
RNA, proteins, or small molecules may bind, modulating the attachment of RNA
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Table 10.2 Some genome data

Organism Number of base
pairs (bp) per
haploid cell

Number of genes Haploid
number of
chromosomes

Number of
cell types
(approx.)

Escherichia coli 4 × 106 4290 1 1

Streptomyces coelicolor 8.6 × 106 7830 1 2

Amoeba dubia 7 × 1011 60000 ∼300? 1

S. cerevisiae 107 6300 16 2

C. elegans 9 × 107 19000 6 30

D. melanogaster 1.8 × 108 13500 4 50

Oikopleura dioicaa 7 × 107 15000 8 ?

Protopterus (lungfish) 1.4 × 1011 ? ∼17 ?

Triturus (newt) 1.9 × 1010 ? 12 150

O. anatinusb 3.06 × 109 18500 26 ?

Mus musculus 3.5 × 109 30000 20 90

Homo sapiens 3.5 × 109 30000 23 220

Neurospora crassa 4 × 107 10000 7 28

D. discoideumc 3.4 × 107 12500 6 4

Ophioglossum (fern) ? ? 200–500 ?

Arabidopsis thaliana 1.35 × 108 25500 5 ?

Fritillariad 1.3 × 1011 ? 12 ?

Picea abies (Norway
spruce)

2 × 1010 28350 12 ?

aA tunicate
bThe duck-billed platypus
cSlime mould
dAbulbous plant from theLiliaceae family, not to be confusedwith the smallmesopelagic larvaceans
in the genus Fritillaria, nor with the fritillary, the name given to several species of butterfly from
the subfamily Heliconiinae

polymerase to the start of a gene); and intergenomic sequences (the rest, sometimes
called “junk” DNA in the same sense in which untranslated cuneiform tablets may
be called junk—we do not know what they mean). This is schematically illustrated
in Fig. 10.3.

Although the DNA-to-protein processing apparatus involves much complicated
molecular machinery, some RNA sequences can splice themselves. This autosplic-
ing capability enables exon shuffling to take place, suggesting the combinatorial
assembly of exons qua irreducible codewords as the basis of primitive, evolving life.

Organisms other than prokaryotes vary enormously in the proportion of their
genome that is not genes. The intergenomic material may exceed by more than an
order of magnitude the quantity of coding DNA. Some of the intergenomic mate-
rial is specially named, notably repetitive DNA. The main classes are the short (a
few hundred nucleotides) interspersed elements (SINES), the long (a few thousand
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(a)

(b)

Fig. 10.3 Simplified schematic diagram of eukaryotic gene structure. a is the antiparallel double
helix.Rectangles represent genes and dashed lines represent intergenomic sequences. b is an expan-
sion of a (a single gene) in a. The shaded rectangles correspond to DNA segments transcribed into
RNA, spliced, and translated continuously into proteins. p is a promoter sequence. In reality, this is
usually more complex than a single nucleotide segment; it may comprise a sequence to which an
activator protein can bind (the promoter site proper) but, also, more distant (“upstream” from the
gene itself), one or more enhancer sites to which additional transcription factors (TF) may bind.
All of these segments together are called the transcription factor binding site (TFBS). There may
be some DNA of indeterminate purpose between p and the transcription start site (TSS) marked
with an arrow. Either several individual proteins bind to the various receptor sites, and are only
effective all together, or the proteins preassociate and bind en bloc to the TFBS. In both cases, one
anticipates that the conformational flexibility of the DNA is of great importance in determining the
affinity of the binding. To the right of the TSS: shaded regions, exons; unshaded regions, introns

nucleotides) interspersed elements (LINES), and the tandem(i.e., contiguous) repeats
(minisatellites andmicrosatellites,17 variable-length tandem repeats (VNTR) etc.).18

These features can be highly specific for individual organisms. Several diseases are
associated with abnormalities in the pattern of repeats; for example, patients suf-
fering from X syndrome have hundreds or thousands of repeated CGG triplets at a
locus (i.e., place on the genome) where healthy individuals have about 30. The rôle
of repetition in DNA is still rather mysterious. One can amuse oneself by creating
sentences such as “can a perch perch?” or “will the wind wind round the tower?” or
“this exon’s exon was mistranslated”19 to show that repetition is not necessarily non-
sense. The genome of the fruit fly Drosophila virilis has millions of repeats of three
satellites, ACAAACT,ATAAACTandACAAATT (reading from the 5′ to the 3′ end),
amounting to about 108 base pairs (i.e., comparable in length to the entire genome,
which does not exceed 2 × 108 base pairs). Another kind of repetition occurs as

17So called because their abnormal base composition, usually greatly enriched in C-G pairs (CpG),
results in satellite bands appearing near the main DNA bands when DNA is separated on a CsCl
density gradient.
18Archaeal and bacterial genomes contain clustered regularly interspaced short palindromic repeats
(CRISPR; see, e.g., Sander and Joung 2014). They have found technological application as a way
of genome editing.
19Most English dictionaries give only one meaning for exon, namely one of four officers acting as
commanders of the Yeomen of the Guard of the Tower of London.
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the duplication in the sense of further multiplication of whole genes along the chro-
mosome (or on another chromosome). The apparently superfluous copies tend to
acquire mutations vitiating their ability to be translated into a functional protein,
whereupon they are called pseudogenes.20 Gene duplication may be considered as
a form of cellular computing.21 In the human, satellite sequences of repetitive DNA
alone constitute about 5% of the genome; in the horse, they constitute about 45%.
Telomere sequences are further examples of repetitive DNA (in humans, TTAGGG
is repeated for 3–20 kb). Between the telomere and the remainder of the chromosome
there are 100–300 kb of telomere-associated repeats.

10.4.3 The C-Value Paradox

Well before genome sequence information became available, it was clear that the
amount of DNA in an organism’s cells (the C-value; more precisely it is the mass
of DNA within a haploid nucleus) did not correlate particularly well with the organ-
ism’s complexity, and this became known as the “C-value paradox.” Examination of
Table10.2will reveal some striking instances—the genomes of amoebae and lungfish
considerably exceeding in size those of ourselves, for example.

Before delving into this questionmore deeply, three relatively trivial factors affect-
ing the C-value should be pointed out. The first is experimental uncertainty, and
ambiguity in the precise definition of the C-value. Second, in some cases, genome
size is merely estimated from the total mass of DNA in a cell. This makes the given
value highly dependent on polyploidy, unusual in mammals but not in amphibians
and fish, and rather common in plants. For example, the lungfish, which has a con-
spicuously large C-value, is known to be tetraploid. Amoebae, which apparently
have an even larger C-value, are likely to be polyploid and, moreover, the amount
of DNA found in an amoeba cell may well be inflated by the remains of genetic
material of recently ingested prey. Care should therefore be taken to ascertain the
amount of genetic material corresponding to the haploid genome for the purposes
of comparison. The third factor is the presence of enormous quantities of repetitive
DNA in many eukaryotic genomes. These repetitive sequences include retrotrans-
posons, vestiges of retroviruses, and so forth. Probably about half of the human
genome can be accounted for in this way, and it seems not unreasonable to consider
this as “junk” (although it appears to play a rôle in the condensation of the DNA into
heterochromatin; see Sect. 10.4.4).22

20For a concrete example see Hittinger and Carroll (2007).
21Shapiro (1992).
22Regarding the remainder, about 5% is considered to be conserved (by comparison with the
mouse); 1.2% is estimated to be used for coding proteins, and the remaining 3.8% is referred to
as “noncoding,” although conservation of sequence is taken to imply significant function (it seems
very probable that this “noncoding” DNA is used to encode the small interfering RNA used to
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Is There a G-Value Paradox?

By correcting for polyploidy and repetitive junk, one arrives at the quantities of
DNA involved in protein synthesis (both the genes themselves and the regulatory
overhead). In some cases, the actual number of genes (the G-value) can be estimated
with reasonable confidence; in other cases, simple application of a compression
algorithm (Sect. 3.4) can be used to provide a minimal description (an approximation
to the algorithmic information content; see Chap.6), which correlates much better
with presumed organismal complexity (as measured, for example, by the number of
different cell types). Where gene number estimates are available, however, the more
complex organisms do not seem to have enough genes. Especially if the figure for H.
sapiens has to be revised downward to a mere 20000, we end up with fewer genes
than A. thaliana, for example! This is the so-called G-value paradox. Its resolution
would appear to lie with enhanced alternative splicing possibilities for more complex
organisms. We humans appear to have the largest intron sizes, for example.23

Differences Between Prokaryotes and Eukaryotes (3)

The above considerations do not directly address the question of why prokaryotes
have rather compact genomes; they seem to be limited to about 10 million base
pairs (10 Mb) (and many bacteria living practically as symbionts in a highly con-
strained environment manage with far less). In a general sense, one can understand
that prokaryotes are under pressure to keep their genomes as small as practicable;
they are usually replicating rapidly under r -selection (Sect. 10.8.4) and the need to
copy 1000 million base pairs would be physicochemically incompatible with a short
interval from generation to generation. On the other hand, most of the cells in a
metazoan are not replicating at all, and the burden of copying enormous genomes
during development is perhaps compensated for by the availability of plenty of raw
material for exploratory intraorganismal gene development (which the prokaryotes
do not need because of the facility with which they can acquire new genetic material
from congeners).

It has recently been shown that the nature of gene regulation also imposes certain
constraints on the relationship between the amounts of DNA assigned to coding
(for proteins) and those which are considered to be noncoding (i.e., corresponding to
regulatory sites such as promoters). According to what is known about the molecular
details of gene transcription (Sect. 10.7.2), to a first approximation each gene (with
an average length of about 300 base pairs) requires a promoter site (which might
have of the order of 10 base pairs). This gives 9:1 as the typical ratio of “coding” to

(Footnote 22 continued)
supplement protein-based transcription factors as regulatory elements). That still leaves the enigma
of the remaining 40–50% that is neither repetitive nor coding in any sense understood at present.
23Taft et al. (1992). Note the connexion between alternative splicing and Tonegawa’s mechanism
for generating B-cell lymphocyte (and hence antibody) diversity in the immune system (Sect. 10.5).

http://dx.doi.org/10.1007/978-1-4471-6702-0_3
http://dx.doi.org/10.1007/978-1-4471-6702-0_6
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“noncoding” DNA in prokaryotes.24 In the spirit of Wright’s “many to many” model
of regulation, gene regulatory networks are expected to be of the “accelerated growth”
type (see Sect. 7.2), because each new gene that is added should be regulatorily
connected to a fixed fraction r of the existing genes. Hence, if g is the number of
genes, then the number of regulations (edges of the graph) r = rg2. These regulations
are themselves mediated by proteins (the transcription factors) encoded by genes.
However, there is an upper limit to the number of interactions in which a protein
can participate, roughly fixed by the number of possible binding sites on a protein
and their variety; empirical studies25 suggest that the upper limit kmax of the degree
k of the network is about 14. Since k = 2r/g, this suggests gmax = kmax/(2r),
which would appear to correspond to the 107 base pairs maximum genome size of
prokaryotes.

As iswell known, however, even allowing for possible overstatement in eukaryotic
genome length, far larger eukaryotic genomes are known to occur.Given their evident
regulatory success (as evinced by the real increase in organismal complexity), one
may suppose that the “accelerated growth” network model still holds; that is, all of
the additional proteins are properly regulatorily integrated. Ahnert et al. (2008) have
proposed that the regulatory deficit implied by g > gmax is met by “noncoding”
RNA-based regulation (see Sect. 10.7.4), the overhead of which is much smaller
than that of the protein (transcription factor)-based regulation; this is borne out by
the length of “noncoding” DNA (∝ r ) increasing quadratically with the length of
coding DNA (∝ g) above the 10 Mb threshold. It begs the question of why protein-
based regulation is used at all, even in prokaryotes, if the RNA-based system is
effective and much less costly, but our present knowledge of RNA-based regulation
seems to be too incomplete to allow this question to be satisfactorily addressed.

DNA Base Composition Heterogeneity

The base composition of DNA is very heterogeneous,26 which makes stochastic
modelling of the sequence (e.g., as a Markov chain) very problematical. This patch-
iness or blockiness is presumed to arise from the processes taking place when DNA
is replicated in mitosis and meiosis (Sect. 10.4.1). It has turned out to be very use-
ful for characterizing variations between individual human genomes. Much of the
human genome is constituted from “haplotype blocks,” regions of about 104–105

nucleotides in which a few (< 10; the average number is 5.5) sequence variants
account for nearly all of the variation in the world human population. The haplotype
“map” is simply a list of the variants for each block (cf. Sect. 20.6).

Haplotypes are essentially long stretches of DNA characterized by a small number
of single-nucleotide polymorphisms (SNPs—pronounced “snips”); that is, mutated
nucleotides. There is an average of about 1 SNP per thousand base pairs in the human

24Some groups of genes, typically those related functionally (such as successive enzymes in a
metabolic pathway), are organized into “operons” controlled by a single promoter site and are
therefore transcribed together (see also Chap.16).
25Kim et al. (2006).
26E.g., Karlin and Brendel (1993).

http://dx.doi.org/10.1007/978-1-4471-6702-0_7
http://dx.doi.org/10.1007/978-1-4471-6702-0_20
http://dx.doi.org/10.1007/978-1-4471-6702-0_16
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genome; thus, if they were uncorrelated, in a typical 50000 base pair haplotype block
there would be about 250 (or 450, depending on whether we are interested in what
the base is mutated to) variants—far more variation than is actually found. Hence,
the pattern of SNPs evinces extremely strong constraint; that is, the occurrences
of individual SNPs are strongly correlated with each other. There is considerable
current interest in trying to correlate haplotype variants with disease, or propensity
to disease.27 This is discussed in more detail in Sect. 20.6.

One notes that as much as 98% of the human genome may be identical with that
of the ape; one could equally well state that there is more genetic difference between
man and woman than between man and ape. To actually derive the vast phenotypic
differences between the two from their genomes appears to be as vain a hope as
solving the Schrödinger equation for even a single gene.

As an information-bearing symbolic sequence, the genome is unusual in that it can
operate on itself. The most striking example is furnished by retrotransposons (i.e.,
transposable elements, whose existence was first proposed by McClintock 1950).
These gene segments inter alia encode a reverse transcriptase enzyme, which facil-
itates the making of a DNA copy of the sequence. The duplicate sequence is then
inserted into the genome; the point of insertion may be remote from that of the
gene from which the copy was made. The basis for McClintock’s proposal was her
observation of rapid variation of the colours of maize kernels from one generation
to another; the interpretation of these changes was that a gene coding for colour
could be inactivated if a transposon were inserted within it, but the transposon could,
with equal facility, be removed during the next round of meiosis, resulting in the
reappearance of the colour.

10.4.4 The Structure of the Chromosome

DNA is subject to oxidation, hydrolysis, alkylation, strand breaks and so forth, coun-
tered byvarious repairmechanisms as discussed inSect. 10.6.2.Molecularmachinery
(called “SOS”) is available to allow replication to proceed despite lesions. Mistakes
are the origin of the genotypic mutations leading to the phenotypic variety required
by Darwin’s theory (see Sect. 10.9).

Eukaryotic DNA is organized into chromatin, a protein-DNA complex. The fun-
damental unit of chromatin structure is the nucleosome, a spheroidal complex about
9nm in diameter made up from eight proteins called histones, around which a
stretch of 140–200 DNA base pairs is wrapped (recall that the DNA double helix
is about 2nm in diameter). The chromosome is constituted from successive nucle-
osomes, joined by short stretches of so-called linker (non-nucleosomal) DNA. The
string of nucleosomes and their linkers are then compacted into fibres about 30nm
in diameter, and these in turn are compactly folded to form the so-called chro-
matin loops, about 300nm in diameter, of the chromosome. Much of the DNA,
perhaps as much as 90% in a resting cell, is in this highly condensed, somewhat

27Another curiosity is that certain DNA sequences display extraordinarily long-range (104 base
pairs or more) correlations (see, e.g., Voss 1992).

http://dx.doi.org/10.1007/978-1-4471-6702-0_20
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inert state called heterochromatin. The condensation appears to occur in association
with long sequences of repetitive DNA. Hypermethylation of cytosine is typical (see
Sect. 10.7.4). The active portion, available for transcription, is known as euchromatin.

The protein core of the nucleosome plays a highly significant rôle in the regu-
lation of transcription (Sect. 10.7.2). The amino acids of the histones are subject to
manymodifications, such as a acetylation,methylation, phosphorylation, and ubiqui-
tination. Hypoacetylation of lysine is associated with heterochromatin formation.28

Methylation of specific lysines is also associated with heterochromatin (and silenc-
ing of euchromatin genes). It is important to bear in mind that histone modification
is a highly dynamic process, constantly under adjustment. Furthermore, there is evi-
dence that the histones are precisely positioned relative to the DNA according to its
sequence.29

10.5 The Immune System

The higher metazoans have developed a sophisticated mechanism for neutralizing
external attack at the micrometre and nanometre scales, at which the dangers are
bacteria and other microbes, viruses and dust particles. This mechanism is called
the immune system and is divided into innate and adaptive parts. The primary (ini-
tial) response is innate and consists in the ingestion of foreign microbodies and
nanobodies by phagocytes. The adaptive immune system, which is only found in the
highest organisms, involves T-cells (matured in the thymus) that have thousands of
copies of the so-called T-cell receptor (TCR) on their surfaces. In principle, each
T-cell has a different TCR, and each one can bind to (i.e., is a receptor for) a par-
ticular oligopeptide–MHC complex,30 provided that the peptide is not from one of
the organism’s proteins. As a result of the binding, these “helper” T-cells release
cytokines, which themselves trigger the proliferation and recruitment of cytotoxic or
killer T-cells, which release perforin, a protein that perforates the target cell mem-
brane when it binds to it. At the same time, B-cells (matured in the bone marrow)
produce antibodies able to bind to portions (“antigens”) of the foreign objects. Each
B-cell produces a unique antibody.31 The binding of a B-cell to “its” antigen leads to
clonal expansion of that B-cell and concomitant expansion of antibody production.
The antibodies binding to the antigens of the foreign objects form molecular com-
plexes that are also recognized by T-cells, a process that leads to the destruction of

28See, for example, Jenuwein and Allis (2001), and Richards and Elgin (2002).
29Audit et al. (2002).
30The MHC (major histocompatibility complex) is a system of proteins residing on the surface of
a cell that complexes with certain oligopeptides derived from a sample of the internal proteins of
the cell.
31The antibody is a protein made up from several different polypeptide chains. Part of the molecule
is the same for all antibodies and part is unique. Tonegawa (1983) demonstrated that the diversity
of antibodies was due to somatic generation of genetic diversity among the genes coding for the
variable (unique) part.
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(or the attempt to destroy) the foreign objects (since they “present” antigens to the
T-cells, they are known as antigen-presenting cells (APC)).

The number N of foreign antigens that must be recognized by an organism is
very large, perhaps greater than 1016, and at the same time there is a smaller number,
N ′ ∼ 106, of self-antigens thatmust not be recognized. Yet, according to Tonegawa’s
theory (see footnote 31), the immunoglobulin and T-cell receptors may only contain
n ∼ 107 different motifs. Recognition is presumed to be accomplished by a general-
ized lock-and-keymechanism involving complementary amino acid sequences. How
large should the complementary region be, supposing that the system has evolved
to optimize the task? If PS is the probability that a random receptor recognizes a
random antigen, the value of its complement PF = 1 − PS maximizing the product
of the probabilities that each antigen is recognized by at least one receptor and that
none of the self-antigens is recognized (i.e., (1 − Pn

F )N PnN ′
F ) is32

PF =
(
1 + N

N ′

)−1/n

. (10.2)

Using the estimated values for n, N , and N ′, one computes PS ≈ 2×10−6. Suppose
that the complementary sequence is composed of m classes of amino acids and that
at least c complementary pairs on a sequence of s amino acids are required for recog-
nition. Since the probability of a long match is very small, to a good approximation
the individual contributions to the match can be regarded as being independent. A
pair is thus matched with probability 1/m andmismatched with probability 1−1/m.
Starting at one end of the sequence, runs of c matches occur as with probability m−c,
and elsewhere they are preceded by a mismatch and can start at s − c possible sites.
Hence

PS = [(s − c)(m − 1)/m + 1]/mc . (10.3)

If s � c > 1, one obtains

c = logm[s(m − 1)/m] − logm PS . (10.4)

Problem. Estimate c, Supposing s to be a few tens, m = 3 (positive, negative,
and neutral residues), and using the numbers given above (since they all enter as
logarithms the exact values are not critical). How does it compare with observation?

10.6 Molecular Mechanisms

In this section, DNA replication and recombination will be examined from the mole-
cular viewpoint. The reader may find it useful to refer to Chap.11 for complementary
information.

32Percus et al. (1993).

http://dx.doi.org/10.1007/978-1-4471-6702-0_11
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Table 10.3 DNA replication

Name Operand Operation Operator Result

Premelting Double helix Facilitation Topoisomerase Strand separation

Melting Double helix Facilitation Helicase Strand separation

Synthesis Single strand Nucleotide
addition

Polymerase Semiconservatively
replicated double helix

Two DNA polymerases are simultaneously active. They catalyse template directed growth in the
5′ → 3′ direction. The leading strand is synthesized continuously from 5′ → 3′ using the strand
beginning with the 3′ end as the template, whereas the lagging strand is synthesized in short
(“Okazaki”) fragments using the strand beginning with the 5′ end as the template. A DNA pri-
mase produces a very short RNA primer at the 5′ end of each Okazaki fragment onto which the
polymerase adds nucleotides. The RNA is then removed by an RNAaseH enzyme. A DNA ligase
links the Okazaki fragments. A set of initiator proteins is also required to begin replication at the
origin of replication. This is, of course, a simplification; for example, it is estimated that almost 100
(out of a total of approximately 6000) genes in yeast are used for DNA replication, and another 50
are used for recombination

Table 10.4 Some types of chromosome rearrangements (with examples)

Name Beforea Aftera

Deletion ABCDEFGH ABEFGH

Insertion ABCDEFGH ABCJFKDEFGH

Inversion ABCDEFGH ABCFEDGH

Transposition ABCDEFGH ADEFBCGH

Tandem duplications ABCDEFGH ABCBCBCDEFGGGGGH
aEach letter represents a block of one or more base pairs

10.6.1 Replication

The molecular mechanism of DNA replication is summarized in Table10.3. Some of
the typical errors—leading to single pointmutations—that can occur are summarized
in Table10.4.

10.6.2 Proofreading and Repair

Many proteins are involved in the repair of mismatched, and breaks in, DNA. Repair
takes place after replication, but before transcription. As with Hamming’s error-
correcting codes (Sect. 3.6), the DNA repair proteins must first recognize the error
and then repair it. It is of primordial importance that DNA is organized into a double
helix; the antiparallel strand can be used to check and template repair of mistakes
recognized in the other one. Instead of repair, apoptosis (death of a single cell; as
opposed to necrosis, death of many cells in a tissue) of the affected cell may occur.
Concomitant with the work of the specific error recognition and repair enzymes, the

http://dx.doi.org/10.1007/978-1-4471-6702-0_3


150 10 The Nature of Living Things

entire cell cycle may need to be slowed to ensure that there is time for the repair
work to be carried out. The mending systems are also used to repair damage caused
by external factors (e.g., cosmic ray impact, oxidative stress etc.).

The available mechanisms are essentially directed toward repairing single-site
errors; there is no special apparatus for eliminating gene duplications and the like.
On the other hand, it is not only base mismatches that need to be repaired. Alkylation
(methylation) damage could adversely affect gene expression and there are enzyme
systems (oxidative demethylases and others) for repairing it.

Just as certain sequences are more prone to error than others, so are certain erro-
neous sequences more easily repaired than others. Whereas the quality of a tele-
phone line is, essentially, independent of the actual words being said, the fidelity
of DNA replication may be sequence-dependent. This possibility could be used by
the genome to explore (via mutations) neighbouring (in sequence space) genomes.
Hence, bioinformatics (applied to genomics) needs a higher-level theory than that
provided by existing information theory. An important, although long-term, task of
bioinformatics is to determine how biological genomes are chosen such that they are
suited to their tasks, encompassing such aspects.

Unreliable DNA polymerase is a distinct advantage for producing new antibodies
(somatic hypermutation) and for viruses needing to mutate rapidly in order to evade
host defences—provided it is not too unreliable: Eigen (1976) has shown that in a
soup of self-replicating molecules, there is a replication error rate threshold above
which an initially diverse population of molecules cannot converge onto a stable,
optimally replicating one (a quasispecies33).

Problem. What are the implications of a transcription error rate estimated as 1
in 105? (in contrast, the error rate of DNA replication is estimated as 1 in 1010).
Calculate the proportion of proteins containing the wrong amino acids due to mis-
takes in transcription, assuming that translation is perfect. Compare the result with
a translation error rate estimated as 1 in 3000.

Problem. Explore the suggestion that the quality of a channel (such as a telephone
line) is independent of the actual message.

10.6.3 Recombination

Homologous recombination is a key process in genetics, whereby the rearrange-
ment of genes can take place. It involves the exchange of genetic material between
two sets of parental DNA during meiosis (Sect. 10.4.1). The mechanism of recogni-
tion and alignment of homologous (i.e., with identical, or almost identical, nucleotide

33A quasispecies may be defined as a cluster of genomes in sequence space, the diameter of the
cluster being sufficiently small such that almost every sequence can “mate” with every other one
and produce viable offspring. The sequence at the centre of the cluster is called the master sequence.
If the error rate is above the threshold, in principle all possible sequences will be found. See also
Sect. 10.9.2.
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sequences) sections of duplex (double-stranded) DNA is far less clear than the recog-
nition between complementary single strands, but may depend on the pattern of elec-
trostatically charged (ionized) phosphates, which itself depends slightly but probably
sufficiently on sequence, and can be further modulated by (poly)cations adsorbed on
the surface of the duplex.34

Following alignment, breakage of the DNA takes place, and the broken ends
are then shuffled to produce new combinations of genes; for example, consider a
hypothetical replicated pair of chromosomes, with the dominant gene written in
majuscule and the recessive allele written inminiscule. If ∗ represents a chromosome
break, we have for the duplex (concerning DNA strands numbered i to iv):

i ABC

ii ABC

iii abc

iv abc

→
i AB ∗ C

ii A ∗ BC

iii a ∗ bc

iv ab ∗ c

→
i ABc

ii Abc

iii aBC

iv abC

. (10.5)

There is supposed to be about one crossover per chromosome per meiosis. In more
detail, the stages of recombination are the following:

1. Alignment of two homologous double-stranded molecules;
2. Breakage of the strands to be exchanged;
3. Approach of the broken ends to their new partners and formation of a fork (also

known as a Holliday junction);
4. Joining of broken ends to their new partners;
5. Prolongation of the exchange via displacement of the fork;
6. End of displacement;
7. Breakage of the 3′ extremities;
8. Separation of the two recombinant double strands;
9. Repair of the breaks via reading from the complementary strand.

The process is drawn in Fig. 10.4.
Unlike replication, in which occasional single-site (“point”) mutations occur due

to isolated errors, recombination results in changes in large blocks of nucleotides.
Correlations between mutations greatly depend on the number of chromosomes. In
species with few chromosomes, reshuffling is combinatorially limited and muta-
tions in different genes are likely to be transmitted together from one generation to
another, whereas in species with large numbers of chromosomes, randomization is
more effective. There are also mechanisms whereby chromosome fission and fusion
can occur, leading to aneuploidy (cf. Sect. 10.4.1), which is a hallmark of cancer
(Sect. 20.2).

34Kornyshev and Leikin (2001).

http://dx.doi.org/10.1007/978-1-4471-6702-0_20
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Fig. 10.4 Strand exchange in
homologous recombination.
The numbers refer to the
stages described in the text

10.6.4 Summary of Sources of GenomeVariation

Single-site mutations, common to all life-forms, may be due to mistakes in duplica-
tion (possibly caused by damage to the template base; e.g., due to ionizing radiation).
A point mutation is a change in a single base (pair). Note that single insertions or
deletions will change the reading frame; that is, all subsequent triplets will be mis-
translated.

Microchromosomal and macrochromosomal rearrangements refer to large-scale
changes involving many blocks of nucleotides. Tandem gene duplications may arise
during DNA replication but, otherwise, the main source for chromosome rearrange-
ment is meiosis.

Prokaryotes mostly do not reproduce sexually and, hence, do not undergo meiosis
but, on the other hand, they are rather susceptible to “horizontal transfer” (i.e., the
acquisition of genetic material from other bacteria, viruses etc.).35

The question of bias in single-site mutations is one of great relevance to evolution.
The null hypothesis is that any mutation will occur with equal probability. If the
mutation is functionally deleterious, according to the Darwinian principle it will not
be fixed in the population, and the converse is true for functionally advantageous
mutations. Kimura’s “neutral” theory of evolution asserts that functionally neutral
(i.e., neither advantageous nor deleterious) mutations will also become incorporated
into the genome (leading to the phenomenon of “genetic drift”).

A similar, but even more intriguing, question can be posed regarding bias in sites
of chromosome breakage and crossover. At present, although it is recognized that the

35See Arber (1998).
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likelihood of DNA duplication or moving is sequence-dependent, there is no overall
understanding of the dependency.

10.7 Gene Expression

Gene expression refers to the processes (Fig. 10.1, d, e and f ) whereby proteins are
produced (“expressed”) from a DNA template. It thus constitutes the bridge between
genotype and phenotype. Whenever cells are not preparing for division (and many
highly differentiated cells never divide), they are simply living, which means, in
formal terms, that they are engaged inmaintaining their essential variables within the
domain corresponding to “alive” (Sects. 9.2 and 9.3). In certain environments, such as
ocean floor sediments several kilometres thick,metabolic activity (of the bacteria that
are presumed to be ubiquitous there) may be barely detectable (the degree of activity
may be many orders of magnitude less than that of familiar laboratory bacteria, or
that of those living parasitically inside a warm-blooded creature). Such environments
are, moreover, unchanging or barely changing; hence, the vital processes can be
maintained with very little need to change any of the parameters controlling them.

Most natural habitats show far more variety of conditions, however. Commonly
encountered environmental disturbances include the fluctuating presence of toxic
molecules and changes of temperature. Hence, cells need the ability to adapt (i.e., to
modify their phenotypes to maintain their essential variables within the vital range).
The formal framework for understanding this process was introduced in Chap.9.
Here we examine the molecular mechanisms of regulation that enable adaptation—
the control of expression of different proteins as the cell proceeds round its cycle
(Fig. 10.2) and as an organism develops (Sect. 10.8); development is a consequence
of differential gene expression. The mechanism is essentially the same in all these
cases. The entire process of gene expression is facilitated by many enzymes.

Despite the existence of elaborate machinery for regulating transcription
(Sect. 10.7.2 ff.) Stochastic influences on expression and, hence, phenotype are dis-
cernible.36

10.7.1 Transcription

The essence of transcription is that RNA polymerases (RNAp, a large molecule
with Mr ∼ 500 000) bind to certain initiation sites (sequences of DNA to which
their affinity is superior) and synthesize RNA complementary to the DNA,37 tak-
ing RNA monomers (nucleotide pyrophosphates) from the surrounding cytoplasm.

36Blake et al. (2003), Raser and O’Shea (2005).

37The transformation is given by: ↓ A G C T

U C G A
.

http://dx.doi.org/10.1007/978-1-4471-6702-0_9
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http://dx.doi.org/10.1007/978-1-4471-6702-0_9
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These enzymes catalyse the formation of a covalent bond between the nucleotide
part of the monomer and the extant uncompleted RNA strand, and they release the
pyrophosphate part into the cytoplasm as a free molecule. Presumably appropriate
hydrogen bonds are formed to the DNA, RNA, and incoming nucleotide pyrophos-
phate, such that if the incoming nucleotide is correctly base-paired with the DNA
template, it is held in the correct conformation for making a covalent bond to the
extant RNA. The catalysis is reversible but is normally driven in the direction of
RNA extension by a constant supply of monomers and the continual removal of the
pyrophosphate.

Inition and termination of RNA synthesis are encoded within the DNA sequence.
The RNAp is therefore similar in its action to the DNA polymerase in DNA
replication.

The RNA folds up as it is synthesized (cf. Fig. 11.4), but extant structure may
have to be disassembled as synthesis proceeds in order to achieve the final structure
of the complete sequence.38

10.7.2 Regulation of Transcription

The key factor in transcriptional regulation is the affinity of RNAp for DNA. The
prequisite for RNA production is the binding of RNAp in the initiation zone of the
DNA. The binding affinity is inter alia influenced by the following:39

1. The binding of molecules to the RNAp;
2. The binding of molecules to the DNA initiation zone.

It is convenient to consider separately transcriptional regulation in prokaryotes and
eukaryotes.

10.7.3 Prokaryotic Transcriptional Regulation

Themain problem to be solved in prokaryotes is that different genes need to be active
under different external conditions and during successive processes in the cell cycle.
The primary control mechanism is via promoter sites situated upstream of that part
of the DNA that will ultimately be translated into protein (cf. Fig. 10.3). For genes
that need to be essentially constantly transcribed (the so-called housekeeping genes;
i.e., those coding for proteins that are constantly required, such as those assembling
the RNAp complex), there is no hindrance to RNAp binding to the inition zone

38See Fernández (1989).
39Suppression of transcription is not perfect. There appears to be a basal rate of transcription of
some genes even in tissues in which they are not required. See Chelly et al. (1989) and Sarkar and
Sommer (1989).

http://dx.doi.org/10.1007/978-1-4471-6702-0_11
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and beginning its work; only in exceptional circumstances might it be necessary to
arrest production, whereupon a protein (called a repressor) will bind to a sequence
within the inition zone (often immediately preceding the protein coding sequence)
called the promoter, preventing the RNAp from binding to the DNA (Sauvageot’s
principle). Sometimes the transcription factor is simply the gene product. Conversely,
for proteins seldom required, such as an enzyme for detoxifying a rarely encountered
environmental hazard, the appropriate RNAp will normally have no affinity for the
initiation zone, but should the toxin penetrate the cell, it will trigger the binding of
a promoting (rather than inhibiting) transcriptional factor (called an activator) to the
promoter site, whereupon the RNAp can bind and start its work.

Sometimes the translation of several (functionally related) genes is controlled by
a single promoter. These structures of genes and promoter are called operons.

10.7.4 Eukaryotic Transcriptional Regulation

The requirements for gene regulation in eukaryotes are more complex, not least
because, in a multicellular organism, as it differentiates many genes need to be
permanently inactivated. Eukaryotes therefore have much richer possibilities for
regulating transcription than prokaryotes. The mechanisms fall into five categories:

1. DNA methylation;
2. Chromatin conformation;
3. Binding of complementary (“antisense”) RNA to key sites on the DNA;
4. Promoter sites and transcription factors (activators and repressors) as in prokary-

otes;40

5. Competition for transcription factors by promoter sites on pseudogenes.

DNA Methylation
The enzymatic addition of methyl groups to cytosines prevents the gene from being
transcribed. This inactivation can be reversed (demethylation), but some genes are
irreversibly (permanently) inactivated (e.g., in the course of development), for exam-
ple, by destruction of the start site. It is not well understood how these different
degrees of inactivation come about. The interrelationship between histone modifica-
tion (Sect. 10.4.4) and DNA methylation may well play a rôle.

Methylation—of 5′-C-G-3′ pairs (CpG, see Fig. 11.3)—is considered to be the
major epigenetic mechanism at the molecular level.41 The actual pattern of methy-
lation is highly specific according to the cell type. In 98% of the human genome,

40Whereas a single RNApoperates in prokaryotes, there are at least three distinct ones in eukaryotes,
accompanied by a host of “general transcription factors,” which considerably increases the possible
combinations of regulatory agents.
41The conventional view is that mammalian methylation occurs exclusively, or at least predomi-
nantly, at CpG pairs, but see, e.g., Doerfler et al. (1990) and Guo et al. (2014).

http://dx.doi.org/10.1007/978-1-4471-6702-0_11
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CpGs occur roughly once per 80 base pairs but, in the remainder, one finds CpG
“islands”—sequences ranging from a few hundred to several thousand base pairs
with a roughly fivefold abundance of CpGs. These islands almost always encompass
gene promoters or exons; about half of all genes seem to contain such an island.
CpGs within islands are normally unmethylated, whereas most of those without the
islands are methylated (and hence transcriptionally inactive).42 Methylation is a way
of retaining information (gathered by the organism from its environment and from
its own functioning) at the ontogenic level.

Chromatin Conformation and Modification

Long regarded as passive structural elements (despite the fact that the chromosome
was known to undergo striking changes in compaction during mitosis), the histones
(Sect. 10.4.4) are now perceived as actively participating in the regulation of gene
expression. The essential principle is that the histones can be modified and unmodi-
fied by the covalent attachment and detachment of chemical groups, especially to and
from the protein “tails” that protrude from themore compact core of the nucleosome.
These result in changes in the protein conformation, affecting the conformation of
the DNA associated with the histone and affecting the affinity and accessibility to
RNAp. Acetyl groups have attracted particular attention, but methyl and phosphate
groups and even other proteins also appear to be involved. The effect of these mod-
ifications is to control whether the associated gene is expressed. The modifications
are catalysed by enzymes.

Currently, there are several ambiguities in the perception of nucleosome-modified
gene expression regulation; for example, either acetylation or deacetylation may
be required for enabling transcription and the modification can be local or global
(affecting an entire chromosome).Are the effects of themodifications on the ability of
transcription enzymes to bind and function at theDNAdependent on themodification
of DNA shape, or rigidity, by themodified histones? Theremay also be proteins other
than histones, likewise susceptible to modification, associated with nucleosomes. It
is appropriate to consider the nucleus as a highly dynamic object full of proteins
reacting with and diffusing to, from, and along the DNA.

RNA Interference

For many years, the rôles of RNA were thought to be confined to messenger RNA,
transfer RNA, and ribosomal RNA; remarkably, the very extensive activity of the
so-called “noncoding RNA” transcribed from intergenic regions and possibly introns
in regulating gene expression was unsuspected until recently. Currently, two classes
of this small (about two dozen nucleotides) RNA are recognized: microRNA (μRNA
or miRNA) and small interfering RNA (siRNA). They appear to originate from their
own microgenes, or are formed from RNA hairpins (cf. Fig. 11.5) resulting from
mistranscribed DNA.

42Useful references for this section are Doerfler et al. (1990), Ramsahoye et al. (1665) and Bird
(2002).

http://dx.doi.org/10.1007/978-1-4471-6702-0_11
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These small RNA molecules seem to be as abundant as mRNA, and their basic
function is to block transcription by binding to complementary DNA sequences,
or to block translation by binding to complementary RNA sequences.The varied
applications of this function include plant defence against viruses.43

Promoter Sites and Transcription Factors

The affinity of RNAp to DNA is strongly dependent on the presence or absence of
other proteins on the DNA upstream of the sequence to be transcribed (cf. Fig. 10.3),
and associated with the RNAp. The principle of activation and repression by the
binding of transcription factors to promoter sites is essentially as in prokaryotes;
in eukaryotes, more proteins tend to be involved, allowing very fine tuning of
expression.

Some molecules can directly interact with mRNA, altering its conformation and
preventing translation into protein. This ability can be used to construct a simple feed-
back control mechanism; that is, the mRNA binds to its translated protein equivalent.
mRNAs able to act in this way are known as riboswitches.

10.7.5 mRNA Processing

Post-transcriptional modification, or RNA processing, refers to the process whereby
the freshly synthesized RNA is prepared for translation into protein. In prokaryotes,
translation often starts while the RNA is still being synthesized; in eukaryotes, there
is an elaborate sequence of reactions preceding translation. In summary, they are:
capping; 3′-polyadenylation; splicing; and export. Moreover, the whole process is
under molecular surveillance and any erroneously processed RNA is degraded back
into monomers.

Splicing is needed due to the introns interspersed in the DNA coding for protein.
The initially transcribed RNA is a faithful replica of both introns and exons. This pre-
mRNA is then edited and spliced (by the spliceosome,which is constituted fromsmall
nuclear riboprotein particles (snRNPs), each incorporating five small nuclear RNAs
and several proteins bound to them). The DNA and the enzymes for transcription
and post-transcriptional modification are enclosed in the lipid bilayer-based nuclear
envelope, from which the edited RNA is exported (as messenger RNA, mRNA) into
the cytoplasm for translation.

Alternative splicing of pre-mRNA is a powerful way of generating variant proteins
from the same stretch of DNA; amajority of eukaryotic genes are probably processed
in this way and, hence, the number of different proteins potentially available far
exceeds the number of genes identified from the sequence of the genome. This
method of generating variety is especially prominent in the generation of B-cell
diversity in the immune system (Sect. 10.5).

43Voinnet (2001); Ding and Voinnet (2014).
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10.7.6 Translation

The mature mRNA emerges from the nucle(ol)us where it is processed by the ribo-
somes, which are large (Mr ∼ 3 × 106 in bacteria; eukaryotic ones are larger),
abundant (about 15000 in an E. coli cell) protein-RNA complexes. In eukaryotes,
ribosomes are typically associated with the endoplasmic reticulum, an extensive
internal membrane of the cell. The overall process comprises initiation (at the start
codon), elongation and termination (when the stop codon is reached). Elongation
has two phases: In the first (decoding) phase, a codon of the mRNA is matched with
its cognate tRNA carrying the corresponding amino acid, which is then added to the
growing polypeptide; in the second phase, the mRNA and the tRNA are translocated
one codon to make room for the next tRNA. As established by Crick et al. (1961)
the mRNA is decoded sequentially in nonoverlapping groups of three nucleotides.44

A messenger RNA may be used several times before it is degraded.
Some of the synthesized proteins are used internally by the cell; for example, as

enzymes tometabolize food and degrade toxins and to build up structural components
within the cell, such as lipid membranes and cytoskeletal filaments, and organelles
such as the chloroplast. Other proteins are secreted to fulfil extracellular functions
such as matrix building (for supporting tissue; or for biofilm) and other special-
ized functions, which become more and more complicated as the organism becomes
more and more sophisticated. Another group of proteins modulate transcriptional,
translational, and enzymatic activities. Many proteins have a dual function as a reg-
ulator and as something else—for example, an enzyme may also be able to modulate
transcription, either of its own RNA or that of another protein.

It is estimated that about a third of newly synthesized proteins are immediately
degraded by proteasomes, because they have recognizable folding errors.

10.8 Ontogeny (Development)

A multicellular organism begins life as a zygote, which is the diploid result of the
union of two (haploid) gametes, male and female. The zygote then undergoes a
series of divisions, the number of cells doubling each time; when 16 cells are present
the zygote has developed into a morula. Its cells then compactify to form a two-
dimensional shell (the blastoderm) enclosing a cavity (the blastocoele) filled with
fluid, the overall object being called a blastocyst or blastula. The presence of mater-
nal transcription factors regulates the initial pattern of gene activation. Rich pos-
sibilities ensue once several cells are formed, for they can emit and receive sub-
stances that activate or inhibit internal processes (including the ability to emit and
receive these substances). At this stage the developing embryo can be modelled as a
two-dimensional cellular automaton. The blastula then invaginates into two or three

44See Table3.1 for the nucleic acid to amino acid transformation.
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layers of cells, the ectoderm on the outside and the endoderm on the inside, with
possibly a mesoderm between them (see also footnote a to Table10.6). This object is
called the gastrula, which may be modelled as a three-dimensional cellular automa-
ton. The ectoderm forms the epidermis and the nervous system; the mesoderm forms
bone, cartilage, muscle, blood etc.; and the endoderm forms the epithelium of the
digestive and respiratory systems and their organs such as the liver.

The word “evolution” was originally coined to describe the unfolding of form
and function from a single-celled zygote to a multicelled adult organism (“normal
development”). Since it happens daily and can be observed in the laboratory, it is far
more amenable to detailed scientific study than evolution comprising speciation and
extinction over geological timescales.

The notion of evolution as the unfolding of parts believed to be already existent
in compact form had already been formalized in 1764 by Bonnet under the name of
preformation, and had been given a rather mechanical interpretation (i.e., unfolding
of a highly compact homunculus produced the adult form).

Later, the term (evolution) came to be used to signify the epigenetic aspects of
development. Epigenesis became the alternative to preformation, with the connota-
tion of “order out of chaos.” Both preformation and epigenesis contained the notion
of coded instructions, but in the latter, at the time of its formulation the actual mech-
anism was conceived rather vaguely (e.g., by suggesting the cooperation of “inner
and outer forces”). Nevertheless, it was firmly rooted in the notion of entelechy; in
other words, the emphasis was on the potential for development, not on a determin-
istic path, which is entirely compatible with the cellular automaton interpretation of
development. One might also refer to the interaction of genes with their environ-
ment.45 “Environment” includes constraints set by the physical chemistry of matter
in general. Wilhelm His clearly perceived the importance of general mechanical
considerations in constraining morphology.

The term “ontogeny” was coined by Ernst Haeckel to signify the developmental
history of an individual, as opposed to “phylogeny,” signifying the evolution of a
type of animal or plant (i.e., the developmental history of an abstract, genealogical
individual).

It has been an important guiding principle that ontogeny is a synopsis of phy-
logeny. Very extensive observations of developing embryos in the eighteenth and
nineteenth centuries led to a number of important empirical generalizations, such
as von Baer’s laws of development (e.g., “special features appear after the general
ones”). It was clear that development embodied different categories of processes
with different timescales largely uncoupled from one another: simple growing (the

45This is a very basic notion that crops up throughout biology. At present, there is no satisfactory
universal formulation, however, but many interesting models have been proposed and investigated,
including those of Érdi and Barna (1984) for neurogenesis, and Luthi et al. (1998) for neurogenesis
in Drosophila. All of these models reduce to the basic formulation for the regulator (Sect. 9.4),
discussed by Ashby (1956).

http://dx.doi.org/10.1007/978-1-4471-6702-0_9
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Table 10.5 Summary of ontogenetic paths (see text for further explanation)

Rate Effect Morphological result Name

Soma Gonads

Fast – Acceleration Recapitulation Acceleration

– Fast Truncation Paedomorphosis Progenesis

Slow – Retardation Paedomorphosis Neoteny

– Slow Prolongation Recapitulation Hypermorphosis

isometric increase of size); growing up (allometric increase,46 especially important
in development of the embryo); and growing older (maturation). By adjusting these
timescales relative to each other (heterochrony), different forms could be created.

Much debate has centred around neoteny—the retention of juvenile features in
the adult animal (paedomorphosis)—and progenesis—the truncation of ontogeny
by precocious sexual maturation. They can be thought of as, respectively, retar-
dation and acceleration of development. If organ size (y) is plotted against body
size (x) and standard shape is defined as (y/x)C, retardation implies that this ratio
occurs at larger x and acceleration occurs at smaller x . Another form of acceleration
is “recapitulation”—previously adult features are pushed into progressively earlier
stages of descendent ontogenies. Table10.5 summarizes ontogenetic paths.

10.8.1 Stem Cells

Multicellular organisms begin life as a single cell, which divides, and the offspring,
in turn, grow and divide and ultimately differentiate to create the variety of cells
that constitute the organism’s cellular repertoire. Stem cells may be defined as cells
that can both self-renew (i.e., reproduce themselves) and differentiate into multiple
cell types (lineages). The “ultimate” stem cell is totipotent and has the ability to
form all cell types. In mammals, the fertilized egg, zygote, and the cells from the
first four divisions (up to 16 blastomeres) are totipotent. Note, however, that strictly
speaking these cells cannot self-renew (e.g., a zygote cannot divide to make two
zygotes), and hence should not perhaps be called stem cells. Pluripotent stem cells
are able to differentiate into the three fundamental types of embryonic germ layer,
namely ectoderm, mesoderm, and endoderm (see footnote a to Table10.6 for more
explanation), fromwhich all themore specialized cell types are derived. Lower down
in the hierarchy are multipotent stem cells, which can form a small number of more
specialized cells derived from a particular germ layer and constituting the somatic
tissues. Fully differentiated cells are typically unable to divide.

46Allometric relations are of the type y = bxa , where a and b are constants. a = 1 corresponds to
isometry.
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Table 10.6 The major divisions (phyla) of animals

Phylum Characteristica Examples

Porifera No permanent tissue Sponges

Coelenterata (cnidaria) 2 or 3 layers of cells Nematode worms

Ctenophora 2 or 3 layers of cells Comb jellies

Annelida Mesoderm has a cavity Earthworms

Arthropoda (∼ 4
5 of all animal species) Jointed limbs Insects, crustaceans,

arachnids

Mollusca True coelom Snails, octopus

Echinoderma Urchin-skinned Starfish

Chordatab Backbone, skull –
aTissue appears with the coelenterata, initially as two layers of cells—an outer (ectoderm) and an
inner (endoderm)—separated by a structureless jelly. In the more advanced exemplars, a third layer
of cells, the mesoderm, replaces the jelly. These are the three primary so-called germ layers of
cells, which further differentiate into more specialized organs. The main animal tissue types are
epithelial, connective, muscle, and nervous. The topology of the coelenterata is that of a simple sack.
Themesoderm cavity that appearswith the annelida develops into the coelomof themollusca (cf. the
main plant tissue types: epidermal, vascular, ground (subdivided into parenchyma (responsible for
photosynthesis (the mesophyll), storage, etc.), collenchyma (structural) sclerenchyma (structural,
without protoplasm; i.e., fibrous); meristematic ground tissue is responsible for growth.
bThe chordata (craniata) are subdivided into subphyla including the vertebrata, whose classes com-
prise the familiar agnatha (lampreys etc.), fish, amphibians, reptiles, birds and mammals

10.8.2 Epigenesis

The fundamental problem of differentiation is that all of the cells have the same com-
plement of genes. How, then, can different types arise? Pluripotent stem cells can be
made to differentiate into neurons, for example, by exposing them to retinoic acid
(at a concentration exceeding a certain threshold). If the initially differentiated cells
then secrete a substance that blocks their as yet undifferentiated neighbours from
differentiating, a stable population of two cell types results.47 Differentiation is thus
seen to be a typical complex phenomenon (cf. Sect. 7.4). If all cells were at all times
identical, then, of course, differentiation could never occur. Even if all are endowed
with the samematernal substance that induces differentiation, however, provided that
the quantity of the substance is small enough for appreciable fluctuations in its con-
centration to occur (among, say, the 16 blastomeres), then they will not differentiate
simultaneously, and if those that do so first can then prevent their neighbours from
doing so, segregation is assured. A great variety of specific molecular mechanisms
is available for the realization of such processes.

47Luthi et al. (1998).
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162 10 The Nature of Living Things

10.8.3 The Epigenetic Landscape

Waddington introduced the term “epigenetics” as the name for the study of “the
causal interactions between genes and their products, which bring the phenotype
into being”,48 and it is particularly associated with the ontogenic level of pheno-
type; that is, possibly stable and preferably heritable changes in gene expression and
phenotype not requiring changes in the sequence of the four fundamental bases of
DNA (Fig. 11.3) in the genome. Waddington is also credited with introducing the
vivid imagery of the “epigenetic landscape” (Fig. 10.5); this represents the process of
successive decision-making during cellular development, most decisions implying
different ultimate outcomes of cell differentiation.49

10.8.4 r and K Selection

In an ecological void (i.e., a new environment empty of life), at least of the types we
are considering, or a highly fluctuating environment, growth is limited only by the
coefficient r in equation (7.5) (r -selection). This circumstance favours progenesis—
rapid proliferation at the cost of sophistication; and slight acceleration of develop-
ment (cf. Table10.5) leads to a disproportionately greater increase in fecundity.

In an older, more complex ecosystem (with a high density of organisms and
intense competition for resources), or a very stable environment, growth is limited
by its carrying capacity—the coefficient K in Eq. (7.5) (K -selection). This circum-
stance favours neoteny. Development is stretched out to enable the development of
more sophisticated forms. There is no pressure to be fecund; the young offspring have
a very low fitness relative to other species. The most successful beings are likely to
be old and wise. The K -selective régime is the scenario for classical progressive evo-
lution, characterized by a primary rôle for increasingly specialized morphology in
adaptation, a tendency for size to increase, and hypermorphosis (the phyletic exten-
sion of ontogeny beyond its ancestral termination) enabled by delayed maturation.
This also applies to human beings, who in our currently K -limited environment will
evolve as much as they can, within phylogenetic constraints, towards more sophis-
ticated forms. In this way economic growth can continue. Nevertheless, the human
population has grown to such an extent that resources are being used at such a rate that
some of themmight actually be used up, for all practical purposes, in the near future.
Unless substitutes can be found, this implies a diminishing K and consequentially a
diminishing population.

Both r - and K -selection lead to diminished flexibility: respectively, in progenesis,
by structural simplification caused by the loss of adult genes; and by overspecializa-
tion.

48Goldberg et al. (2007).
49See Gilbert (1991) for a critique and Buss and Blackstone (1991) for an experimental exploration.
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http://dx.doi.org/10.1007/978-1-4471-6702-0_7
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Fig.10.5 Waddington’s sketch of the epigenetic landscape (fromC.H.Waddington, The Strategy of
the Genes: A Discussion of Some Aspects of Theoretical Biology, London: George Allen andUnwin,
1957; reproduced with permission). Some explanation is given in C.H. Waddington, Principles of
Embryology, New York: Macmillan, 1956: the spheroid represents a genotype and it has some bias
(which in a physical realization of the model could be achieved by departures from sphericity, or
an asymmetrical internal distribution of mass) corresponding to the particular initial conditions in
some part of the newly fertilized egg. The surface slopes down towards the observer and at the
saddle points (cf. Fig. 7.3 and the associated text) the genotype will move unpredictably to the left
or to the right. The endpoint of the sequence of bifurcations will correspond to some typical organ.
Waddington further proposed that the topography of the landscape, formed from a thin skin of some
material, arose through a layer of genes beneath it, attached with guy-ropes to various points on
the underside of the surface, the guy-ropes representing the “chemical tendencies which the genes
produce”

A single species in a new, pristine environment simply proliferates until that niche
is filled (r -selection). It also explores neighbouring genomes, and if these allow it
to more successfully exploit some part of the environment (e.g., at the periphery
of the zone colonized), a new species may result. Each new species itself makes
the environment more complex, creating new niches for yet more species, and the
environment is thereby transformed into one governed by K -selection.

10.8.5 Homeotic Genes

Homeotic genes regulate homeotic transformations; that is, they are involved in
specifying body structures in organisms, homeosis (or homoeosis) being a shift in

http://dx.doi.org/10.1007/978-1-4471-6702-0_7
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structural development.Homeotic genes encode a protein domain, the homeodomain,
which binds toDNAand regulatesmRNAsynthesis; that is, it is a transcription factor.
The part of the gene encoding the homeodomain is known as the homeobox, or Hox
gene (in vertebrates). It is a highly conserved motif about 180 bases long. Hox
and Hox-like genes (in invertebrates) are arranged consecutively along the genome
and this order is projected onto, for example, the consecutive arrangement of body
segments in an insect. Although considerable work has been done on elucidating
the molecular details of homeotic transformations, it is not presently possible to
encapsulate this knowledge in an algorithm for development.

10.9 Phylogeny and Evolution

Classical Darwinian theory50 is founded on two observed facts:

1. There is (inheritable) variety among organisms.
2. Despite fecundity, populations remain roughly constant.

From these Darwin inferred that population pressure leads to the elimination of
descendants less able to survive than slightly different congeners. Formally, there-
fore, evolution is a problem of selection. Only certain individuals (or species—see
Sect. 10.9.1) are selected to survive. It is practically synonymous with natural selec-
tion, the “natural” being somewhat redundant.

Modern evolutionary theory is especially concerned with the following:

1. The levels atwhich change occurs (e.g., genes, cell lineages, individual organisms,
species). Darwin dealt with individual organisms (microevolution); macroevolu-
tion deals with mass extinctions.

2. The mechanisms of change corresponding to the levels. The root of inheritable
variation lies in the genes, of course; investigations of mechanisms operating
at the higher levels subsume the lower-level mechanisms. The investigation of
macroevolution has to deal with unusual (rare) events, such as the collision of
Earthwith a largemeteor, andwith avalanches of extinctions facilitated by trophic
and other interactions between species.

3. The range of effects wrought by natural selection, and the timescales of change.

Critiques of classical Darwinism are legion. Inter alia, one may note the follow-
ing: The selectionist explanation is always a construction a posteriori; evidence
cited in favour of natural selection is often inconsistent; hence, rules are difficult to
discern (examples: what is the selectionist advantage of the onerous migration of

50It is fairly well known that both Darwin andWallace contributed independently; perhaps less well
known is that priority appears to belong to Patrick Matthew (1831).
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Comacchio eels to the Sargasso Sea for breeding? Why does the cow have multi-
ple stomachs, whereas the horse (a vegetarian of comparable size) has only one?
Why do some insects adopt marvellous mimickries allowing them to be concealed
like a leaf, whereas others, such as the cabbage white butterfly, are both conspicu-
ous and abundant?)—all one can say is that every surviving form must have been
viable (i.e., of some selective advantage) or it would not have survived, and this is,
of course, no proof that it is a product of selection; there appears to be no essential
adaptive difference between specialization and nonspecialization—both are found
in abundance; selection presupposes all of the other attributes of life, such as self-
maintenance, adaptability, reproduction and so forth; hence, it is illogical to assert
that these attributes are the result of selection; there is no evidence that progression
from simple to complex organisms is correlated with better adaptation, selective
advantage, or the production of more numerous offspring—adaptation is clearly
possible at any level of organization, as evinced by the robust survival of very simple
forms.

Although the classical theory ascribes competition between peers as a primor-
dial motor of change, decisive evolutionary steps seem to have occurred when the
relevant ecological niches were relatively empty, rather than in a period of intense
competition.51

Arguments of this nature imply that the classical or orthodox view of evolution
does not offer a satisfactory explanation of the observed facts. At present, we do
not have one. It looks likely that principles of self-organization (Sect. 9.8), rooted
in the same physicochemical laws governing the inanimate world, are involved. It
would appear to be especially fruitful to focus on the constraints, on which a start has
been made by Stephen Jay Gould (1977) with his picturesque image of spandrells in
vaulted rooms: In well-known buildings, such as the San Marco cathedral in Venice,
the decoration of the spandrells is a notable feature and contributes so significantly
to the overall aesthetic effect that one’s first impression is that they were designed
into the structure by the architect. They are, however, an inevitable consequence of
the vaulting and were used opportunistically for the decoration, much as feathers,
developed to provide thermal insulation, seem to have been used opportunistically
for flight—flight was an exaptation, not an adaptation. Other examples are now
known at the molecular level, where existing enzymes are adapted to catalyse new,
unrelated reactions.

The synthetic theory of evolution (sometimes called gradualism) asserts that spe-
ciation is a consequence of adaptation. Species are supposed to arise through the
cumulative effects of natural selection acting on a background noise of myriads of
micromutations. The genetic changes are not random (in contrast to classical natural
selection), nor are they directed toward any goal. Change is opportunistic; that is, the
most viable variants (in a given context) are selected. Selection takes place in vast
populations. The sole mechanism is intraspecies microevolution.

51See Kirchner (2002) regarding limits on the rate of the filling process.
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Fig. 10.6 Sketch of
speciation according to
the punctuated equilibrium
concept

The synthetic theory is not in accord with the facts of palaeontology. Ruzhnetsev
has emphasized that change is concentrated in speciation events. The time needed
for a new species to become isolated seems to be negligible in paleontological (let
alone geological) time: a few hundred years. Transitional forms are not observed (on
the other hand, certain species have been stable for more than 100 million years).
Speciation precedes adaptation. This theory is now usually called punctuated equi-
librium (Fig. 10.6). It is in sharp contrast to gradualism, which predicts that the
rate of evolution (i.e., the rate of speciation) is inversely proportional to generation
time. There is little evidence for such a correlation, however. On the contrary, for
example, the average species duration D̄ for mammals is about 2 My.52 Their initial
Cenozoic divergence took place over about 12 My, but this would only allow time
for about 6 speciations, whereas about 20 new orders, including bats and whales,
appeared. Punctuated equilibrium interprets this as the rapid occupation (by speci-
ation) of niches vacated by dinosaurs in the great mass extinction at the end of the
Cretaceous era.

10.9.1 Group and Kin Selection

This topic arose through attempts to encompass altruism in evolutionary theory:
an apparent paradox arises because the individual cost of altruism suggests that
it should always be selected against (selection being considered to operate at the
level of the individual).53 The concepts of group selection and kin selection arose
through attempts to incorporate the emergence of social behaviour into evolutionary
theory. One posits a social structure in which individuals form clusters (cf. Sect. 8.3)
or groups; a group exists if its members interact much more frequently with each

52See Stanley (1975) for a full discussion.
53McAndrew (2002).
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other than with members of other groups. It is then asserted that natural selection
operates at the level of the group. To avoid any implicit restriction to a single level of
clustering, group selection is better referred to as multilevel selection. On the other
hand, the concept of inclusive fitness (often referred to as kin selection) appears to
deliver a similar result.

Let the donor be the executor of some altruistic act of kindness, and the acceptor
the beneficiary. IfR is the genetic relatedness (given, for example, bySewallWright’s
coefficient of relationship) between donor and acceptor, B the benefit (in terms of
fitness) to the acceptor, and C the fitness cost to the donor, then Hamilton’s rule
(drawing on the Price equation) states that altruism will be favoured if

RB > C . (10.6)

The social insects (cf. Sect. 10.4.1) form a nice example of this rule in operation.
Actually group selection and kin selection are formally equivalent54 and there

seems to be little justification for the sometimes acrimonious disputes favouring one
or the other mechanism.

Problem. Outline how Hamilton’s rule suggests conditions under which coopera-
tive behaviour can evolve.

10.9.2 Models of Evolution

Typical approaches assume a constant population of M individuals, each of whose
inheritable characteristics are encoded in a string (the genome s, synonymous with
genotype) of N symbols, si , i = 1, . . . , N . N is fixed, and environmental condi-
tions are supposedly fixed too. All of the individuals at generation t are replaced by
their offspring at generation t + 1. The state of the population can be described by
specifying the genomes of all individuals. Typically, values of M and N are chosen
such that the occupancy numbers of most possible genomes are negligibly small; for
example, if N ∼ 106 and M ∼ 109, M � 2N , the number of possible genomes
assuming binary symbols. In classical genetics, attention is focused on a few char-
acteristic traits governed by a few alleles, each of which will be carried by a large
number of individuals and each of which acts independently of the others (hence,
“bean bag genetics”); modelling is able to take much better account of the epistatic
interactions between different portions of the genome (which surely corresponds
better to reality).

The model proceeds in three stages(cf. evolutionary computing, Sect. 8.1):

Reproduction: Each individual produces a certain number of offspring; the indi-
vidualα at generation t is the offspring of an individual (the parent) that was living
at generation t − 1 and which is chosen at random among the M individuals of
the population.

54Marshall (2011).

http://dx.doi.org/10.1007/978-1-4471-6702-0_8
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Mutation: Each symbol is modified (flipped in the case of a binary code) at a rate
μ; the rate is constant throughout each genome and is the same from generation
to generation.

Selection: The genome is evaluated to determine its fitness W (s) = eFs/C ,55

which, in turn, determines the number of offspring.C is the selective temperature.

The topography of a fitness landscape is obtained by associating a height F(s) with
each point s in genotype space. Various fitness landscapes have been studied in
the literature; limiting cases are those lacking epistatic interations (i.e., interactions
between genes) and those with very strong epistatic interations (one genotype has
the highest fitness; the others are all the same). In the latter case the population may
form a quasispecies (the term is due to Eigen, see footnote 33), consisting of close
but not identical genomes. Distances between genomes s and s′ are conveniently
given by the Hamming distance:

dH(s, s′) =
N∑

i=1

(si − s′
i )
2

4
, (10.7)

and the overlap between two genomes s and s′ is given by the related parameter

ω(s, s′) = 1

N

N∑

i=1

si s
′
i = 1 − 2dH(s, s′)

N
. (10.8)

ω is an order parameter analogous to magnetization in a ferromagnet. If the mutation
rate is higher than an error rate threshold, then the population is distributed uniformly
over the whole genotype space (“wandering” régime) and the average overlap∼1/N
(see Sect. 10.6.2); below the threshold, the population lies a finite distance away
from the fittest genotype and ω ∼ 1 − O(1/N ).56 Intermediate between these two
cases (none and maximal epistatic interactions) are the rugged landcapes studied by
Kauffman (1984).57 More realistic models need to include changing fitness land-
scapes, resulting from interactions between species—competition (one species
inhibits the increase of another), exploitation (A inhibits B but B stimulates A),
or mutualism (one species stimulates the increase of another; i.e., coevolution).

As presented, the models deal with asexual reproduction. Sex introduces compli-
cations but can, in principle, be handled within the general framework.

These models concern microevolution (the evolving units are individuals); if the
evolving units are species or larger units such as families, then one may speak of
macroevolution. There has been particular interest in modelling mass extinctions,
which may follow a power law (i.e., the number n of extinguished families ∼ nγ ,

55The fitness of a phenotypic trait is defined as a quantity proportional to the average number of
offspring produced by an individual with that trait, in an existing population. In themodel, the fitness
of a genotype s is proportional to the average number of offspring of an individual possessing that
genotype.
56See Peliti (1996) for a comprehensive treatment.
57Cf. Sect. 7.2; see Jongeling (1996) for a critique.

http://dx.doi.org/10.1007/978-1-4471-6702-0_7
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with γ equal to about −2 according to current estimates). Bak and Sneppen (1993)
invented a model for the macroevolution of biological units (such as species) in
which each unit is assigned a fitness F , defined as the barrier height for mutation
into another unit. At each iteration, the species with the lowest barrier is mutated—
implying assigned a new fitness, chosen at random from a finite range of values.
The mean fitness of the ecosystem rises inexorably to the maximum value, but if
the species interact and a number of neighbours are also mutated, regardless of their
fitnesses (this simulates the effect of, say, the extinction of a certain species of grass
on the animals feeding exclusively on that grass58), the ecosystem evolves such that
almost all species have fitnesses above a critical threshold; that is, the model shows
self-organized criticality. Avalanches of mutations can be identified and their size
follows a power law distribution, albeit with γ ∼ −1. Hence, there have been various
attempts to modify the model to bring the value of the exponent closer to the value
(−2) believed to be characteristic of the Earth’s prehistory.59

10.9.3 Further Remarks on Sources of GenomeVariation

Non-Darwinian evolution ascribes the major rôle in molecular evolution to “genetic
drift”—random (“neutral”) changes in allele frequency (cf. Sect. 10.6.4). Classically,
it is questionable whether genotypic differences without an effect on phenotype
can affect fitness (in any sense relevant to evolution).60 One should bear in mind
that one of the engines of evolution, natural selection, operates on phenotype not
genotype (to a first approximation at least) and, therefore, genes on their own are
only the beginning of comprehending life; it is essential to understand how those
genes are transformed into phenotype. To survive, however, a species or population
needs adaptedness (to present conditions), (genetic) stability, and (the potential for)
variability. Without stability, reproductive success would be compromised. Genetic
variability is, of course, antithetical to stability, but phenotypic variability, reflecting
control over which portion of the protein repertoire will be expressed, determines the
range of environments in which the individual can survive and, hence, is equivalent
to adaptedness to future conditions (cf. directive correlation and its degree, Sect. 9.2).
The eukaryotic genome, with its resources of duplicate genes, pseudogenes, trans-
posable elements, exon shuffling, polyploidy, and so forth, possesses the potential of
phenotypic variability while retaining genetic stability. Prokaryotes lack these fea-
tures, but they can readily acquire new genetic material from their peers or or from
viruses (see footnote 35).

58For example the takahe feeds almost exclusively on snow grass.
59Newman (1996).
60See also Sect. 9.7

http://dx.doi.org/10.1007/978-1-4471-6702-0_9
http://dx.doi.org/10.1007/978-1-4471-6702-0_9
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Table 10.7 The hierarchical scheme of the descriptive taxonomy of eukaryotes

Name Example (1) Example (2)

Kingdom Animalia (metazoa) Plantae (green plants)

Phylum Chordata Angiospermophyta

Subphylum Vertebrata –

Class Mammalia Monocotyledonae

Order Primates Asparagales

Suborder Anthropoidae –

Superfamily Hominoidae –

Family Hominidae Alliaceae

Genus Homo Allium

Species Sapiens Sativum

Individuals Fred Bloggs –

Examples are given for an individual human being and the culinary garlic

10.9.4 The Origin of Proteins

The random origin hypothesis61 asserts that proteins originated by stochastic
processes according to simple rules (i.e., that the earliest proteins were random
heteropolymer sequences). This implies that their length distribution is a smoothly
decaying function of length (determined by the probability that a stop codon will
occur after a start codon has been encountered, in the case of templated synthesis
without exons). On the other hand, the probability that a sequence can fold into a sta-
ble globular structure is a slowly increasing function of length up to about 200 amino
acids, after which it remains roughly constant. Convolution of these two distributions
results in a length distribution remarkably similar to those of extant proteins.

10.9.5 Taxonomy and Geological Eras

This section refers to the Tables10.7 and 10.8 of the major groupings of living and
growing things and the geological eras of the Earth.

Three lineages are recognized: the archaea (represented by extremophilic
prokaryotes, formerly known as archaebacteria), the eubacteria (true bacteria, to
which the mitochondria and chloroplasts are provisionally attributed), and the
eukaryotes (possessing true nuclei). The eukaryotic kingdoms are animalia (meta-
zoa), plantae, fungi, and protista (protozoa, single-celled organisms, including algae,
diatoms, flagellates, amoebae, etc.). The approximate numbers of species of these

61See White (1994).
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Table 10.8 History of the earth and earthly life

Name Epocha Events New or dominant life

– 4300 Earth formed None

Phanerozoic 3500? – First life

3000? – Stromatolites

2500? – Mitochondria

2000? – Bacteria

Palaeozoic

Cambrian 570–500 – Trilobites

Ordovician 500–440 – –

Silurian 440–410 – Fish, land (vascular) plants

Devonian 410–345 – –

Carboniferous 345–280 Abundant plants Giant insects, reptiles

Permian 280–225 Panguea (the single
supercontinent), hot and dry;
great mass extinction at the end

Reptiles

Mesozoic

Triassic 225–190 Gondwanaland (the great
southern continent)

–

Jurassic 190–134 Warm Gymnosperms, ferns

Cretaceous 135–65 Mass extinction at end Birds, dinosaurs

Cenozoic (tertiary)

Palaeocene 65–54 Volcanoes Many

Eocene 54–38 Separation of eurasia High diversity

Oligocene 38–26 Cooling Low diversity

Miocene 26–7 Continental collisions –

Pliocene 7–2.5 Himalayas, Alps Elephants, Australopicethus

Cenozoic (quaternary)

Pleistocene 2.5–0.01 Last ice age Woolly mammoth

Holocene 0.01–pres. – H. sapiens
aIn millions of years before present

different kingdoms are currently estimated as 107 (metazoa), 2.5 × 105 (plantae),
2 × 105 (protozoa), and 5 × 104 (fungi).

Problem. Estimate the fraction of all possible DNA sequences that are represented
in extant species.
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11TheMolecules of Life

11.1 Molecules and Supramolecular Structure

Table11.1 gives some approximate values for the atomic composition of a cell.
The atomic composition represents a highly reductionist view, somewhat akin to
asserting that the informational content of Macbeth is −∑

alphabet pi log2 pi , where
pi is the normalized frequency of occurrence of the i th letter of the alphabet. The
next stage of complexity is to consider molecules (Table11.2) and macromolecules
(Table11.3). This is still highly reductionist, however—it corresponds to calculating
Shannon entropy from the vocabulary of Macbeth. Words are, however, grouped
into sentences, which, in turn, are arranged into paragraphs. The cell is analogously
highly structured—molecules are grouped into supramolecular complexes, which,
in turn, are assembled into organelles. This structure, some of which is visible in
the optical microscope, but which mostly needs the higher resolution of the electron
microscope, is often called ultrastructure. It is difficult to quantify—that is, assign
numerical parameters to it,withwhich different sets of observations can be compared.
The human eye can readily perceive drastic changes in ultrastructure when a cell is
subjected to external stress, but generally these changes have to be described in
words.

The most prominent intracellular structural feature is the system of lipid bilayer
membranes, such as the endoplasmic reticulum. Also prominent are the proteins
such as actin, which form large filamentous structures constituting a kind of skele-
ton (the cytoskeleton). There are also many more or less compact (globular), large
multiprotein complexes (e.g., the proteasome). Furthermore, proteins may be asso-
ciated with lipid membranes or with the DNA. These structures are rather dynamic;
that is, there is ceaseless assembly and disassembly, depending on the exigencies of
survival. Some of them are described in more detail under the descriptions of the
individual classes of molecules.

The interior of the cell is an exceedingly crowdedmilieu (compare the quantities of
moleculeswith the dimensions given inTable11.4).Althoughwater constitutes about
70% of a typical cell, very little of this water is free, bulk material. The very high
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Table 11.1 Atomic
composition (selected
elements) of a typical dried
microbial cell

Element Rel. atomic fraction

H 100000

C 5300

O 1600

N 1300

P 130

K, Na 80

S 40

Fe 5

Cu 1

concentrations of molecules and macromolecules ensure that the cytoplasm is a
highly viscous medium. Moreover, most of the macromolecules (e.g., proteins) are
attached to larger structures such as the internal membranes. Kempner and Miller’s

Table 11.2 Molecular composition of a typical microbial cell (the components are not uniformly
dispersed in the cell)

Molecule wt (%) mol (%) Mr
a No types No molecules

DNA 1 – 3 × 109 1 1

RNA 6 – (105) 500 250000

Protein 15 – 5 × 104 1000 2 × 106

Saccharide 3 – (104) 50 5000

Lipidb 2 0.1 103 40 2 × 107

Smallc 2 1.0 102 500 107

Water 70 98.9 18 1 2 × 1010

aParentheses indicate approximate means of very broad ranges
bIncluding liposaccharides
cMetabolic intermediates, inorganic ions, and so forth

Table 11.3 Some characteristics of the macromolecules of a cell

Polymer Monomer Variety Typical length Bond varietya

DNA Nucleotideb 4 2000 1

RNA Nucleotideb 4 2000 1

Protein Amino acidc 20 200 1

Polysaccharide Monosaccharide ∼10 20 ∼3
aThat is, the type of bonding between monomers
bA nucleotide consists of a base, a sugar, and one or more phosphate groups. The variety resides
solely in the bases
cAn amino acid consists of a backbone part, identical for all except proline, and a side chain (residue)
in which the variety resides
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Table 11.4 Morphology and
other properties of a typical
eukaryotic cell (A typical
prokaryote, such as the
organism specified in
Table11.2, would have a
diameter about 10 times
smaller)

Property

Shape Sphere

Density 1.025g/cm3

Radius 5µm

Volume 5 × 10−16 m3

Surface charge −10 fC/µm2

Coat material Polysaccharide

Coat thickness 10nm

Coat charge density −5MC/m3

classic experiments, in which they centrifuged intact cells to separate macromole-
cules from the water, demonstrated this very clearly—hardly any macromolecules
were found in the aqueous fraction. This was in sharp contrast to the result of the
traditional biochemical procedure of destroying all ultrastructure by mechanical
homogenization, yielding an aqueous cytosol containing many dissolved enzymes
(cf. Sect. 10.2.1).

The effect of the ultrastructure is twofold: to divide the cell up into compartments,
not hermetically separated from one another but allowing access to different zones
to be controlled, and to provide two-dimensional surfaces on which searching for
and finding reaction partners is far more efficient than in an unstructured bulk.1

The separation of the macromolecules, which of course plays a crucial part in
experimental bioinformatics, is dealt with in Part III.

11.2 Water

As seen from Table11.2, water is overwhelmingly dominant in the cell. Water (H2O)
is a very unusual substance, as can be inferred from its extraordinarily high boiling
point (compared with other molecules of comparable size) and large specific heat. A
salient feature of themolecule is its great polarity—the bond between the oxygen and
the hydrogen has a very strong ionic character. The electrostatic attraction between
the positively charged hydrogen (δ+) and the negatively charged electron lone pair
on the oxygen (δ−) constitutes the hydrogen bond (Fig. 11.1). It can be thought of as
a redistribution of electron density from the covalent O–H bond to the zone between
the H and the neighbouring O. This loss of electron density from the covalent O–H
bond results in a weaker, more slowly vibrating bond.

1See Ramsden and Grätzel (1986).

http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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Fig. 11.1 A water molecule hydrogen-bonded to its congeners. The hydrogen atom is typically
0.10nm from the oxygen to which it is covalently bonded (solid lines) and 0.18nm from the
neighbouring oxygen to which it is hydrogen-bonded (dotted lines). The energy of the hydrogen
bond (H-bond) is about 0.1eV (i.e., about 4kB T at room temperature or about 2.4kJ/mol)

Each water molecule can simultaneously accept and donate two hydrogen bonds
(each hydrogen is a donor, and the oxygen bears two lone electron pairs). In flawless
ice, the water molecules are H-bonded together in a tetrahedral arrangement.

TheO–H infrared spectrum (ofHOD in liquidD2O) gives a very broad distribution
of energies, implying a continuum from ice-like to nonbonding. In purewater at room
temperature, about 10% of the O–H groups and lone pairs (LP) are nonbonded; close
to the boiling point, this percentage rises to about 40.

Bonded and nonbonded ions are in equilibrium:

H2Ofully bonded � OHfree + LPfree , (11.1)

where the subscript “free” denotes nonbonded. LPfree and OHfree are, respectively,
an electron donor (Lewis base) and electron acceptor (Lewis acid) and hence can
interact with other species present in solution. An ion pair such as KCl interacts with
both LPfree and OHfree in roughly equal measure; hence, KCl does not perturb the
equilibrium (11.1), whereas (to take an extreme case) NaB(C6H5)4 can only interact
with LPfree, hence increasing the concentration of free OH groups. This kind of
interaction has profound implications for macromolecular structure, as will be seen
(Sect. 11.5).

11.3 DNA

Deoxyribonucleic acid is considered to be the ultimate repository of potentially
meaningful information in the cell. DNA is poly(deoxyribonucleic acid), and the
information is conveyed by the particular sequence of bases of the polymer. Each
monomer unit has three parts: base, sugar, and phosphate (Fig. 11.2). The sugar
(deoxyribose) and phosphate are always the same; the possibility of storing infor-
mation arises through varying the base, for which there are four possibilities: the
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Fig. 11.2 Polymerized DNA.
The so-called 3′ end is at the
upper left end, and the 5′ end
is at the lower right (after
Ageno 1967; reproduced with
permission of the Accademia
dei Lincei)

purines adenine (A) and thymine (T), and the pyrimidines cytosine (C) and guanine
(G). The strand running from 5′ to 3′ is called the “sense” strand (i.e., it is used to
specify protein sequences via RNA), and the other one the “antisense” (antiparallel)
strand. Mainly only one strand encodes this information and the complementary one
serves to correct damage (Sect. 10.6.2).

Each base has the very important property of being able to H-bond with one
of the other three, the complementary base, significantly better than to any of the
others. This is perhaps the purest,most elementary example ofmolecular recognition.
Hence, a polymerized chain of monomers can serve as a template for the assembly of
a complementary strand. The purine pairs are linked by only two H-bonds, whereas
the pyrimidines are linked by three (Fig. 11.3). This means that the C–G base-pairing
melts (i.e., the H-bonds are broken) at a higher temperature than the A–T pairing.

As expected from their aromatic structure, the bases are planar. Figure11.4 shows
the formation of the double helix. The genes of most organisms are formed by such
a double helix. The melting of the H-bonds as the temperature is raised is highly
cooperative (due to the repulsive electrostatic force between the charged phosphate
groups). On average, the separation into single stranded DNA occurs at about 80 ◦C
(at about 90 ◦C for sequences rich in C–G pairs, and at about 65 ◦C for sequences
rich in A–T pairs). These melting temperatures are lower at extremes of pH. Melting
leads to complete separation of the two chains, which is made use of in artificial gene

http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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Fig. 11.3 The hydrogen-
bonding patterns of comple-
mentary bases (thymine [T],
adenine [A], guanine [G],
cytosine [C], moving round
clockwise from the upper left)
(after Ageno 1967; repro-
duced with permission of
the Accademia dei Lincei).
In RNA, uracil (U) replaces
thymine (i.e., the methyl
group on the base is replaced
by hydrogen) and the ribose
has a hydroxyl group. The
lower pair is denoted CpG
(Sect. 10.7.4)

manipulation, as discussed in Part III. During in vivo replication, as discussed in the
previous chapter, the chains are only separated locally.

Table11.5 summarizes some significant discoveries relating to DNA.
It is now recognized that the structure, especially the sequence- and modific-

ation-dependent rigidity (bending modulus) plays a profound rôle in the fidelity
of replication, the regulation of transcription, and the movement of DNA through
crowded milieux. The last aspect is of practical importance in DNA fractionation for
sequencing, and so forth.

Under typical conditions of temperature, acidity, salt concentration, and so on
prevailing in cells, the right-handed (Watson and Crick) double helix is the most
stable structure, but others exist, such as the left-handed helix (Z-DNA), flips to
which may play a rôle in gene activation. Circular DNA can be supercoiled; differing
degrees of supercoiling affect the accessibility of the sequence to RNA polymerase
and is thus a regulatory feature. There are several enzymes (topoisomerases, gyrases,
and helicases) for changing DNA topology.

Double-stranded DNA is a rather rigid polymer, yet, despite its length, if stretched
out in a straight line (about 1.2mm for the DNA of E. coli), it is nevertheless packed
into a cell only about 1µm long. (Human DNA would be about 1m long.)

A prominent feature of the DNA molecule is its high negative charge den-
sity due to the phosphate groups along the backbone. This gives DNA an ionic

http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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Fig.11.4 A stack of polymer-
ized base pairs (left) distorted
(right) by slightly twisting in
order to form the double helix
(after Ageno 1967; repro-
duced with permission of the
Accademia dei Lincei)

strength-dependent rigidity, which is also a significant factor affecting transcription
and translation.

The rigidity can be quantified by the persistence length p, which depends on
Young’s modulus E :

p = E Is/(kB T ) , (11.2)

where Is is the moment of inertia (= πr4/4 for a cylinder of radius r ), kB is Boltz-
mann’s constant, and T is the absolute temperature. For DNA, r ≈ 1.2nm and
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Table 11.5 Some milestones in molecular bioinformatics

Discovery or event Year Principal worker(s)

Nuclei contain an acidic substance 1869 Miescher

A tetranucleotide structure elucidated 1919 Levene

DNA identified as genetic material 1944 Avery

First protein (insulin) sequenced 1953 Sanger

DNA double helical structure 1953 Watson and Crick

Sequence hypothesis, central dogma 1957 Crick

First protein structure revealed (myoglobin) 1957 Kendrew, Perutz

Semiconservative replication 1958 Meselson and Stahl

DNA polymerase isolated 1959 A. Kornberg

Sequential reading of bases 1961 Crick

First protein sequence data bank 1965 –

Genetic code decrypted 1966 Crick

First protein structure data bank (PDB) 1971 –

First entire genome (H. influenzae) sequenced 1995 –

First multicellular genome (C. elegans) 1999 –

E ≈ 106 N/m, giving p ≈ 60nm. The radius of gyration Rg of the polymer (length
L) as a Gaussian coil is given by (Lp/6)1/2.

A mixture of different molecules of DNA is usually separated into its components
using gel electrophoresis, in which the DNA is driven by an electric field through a
hydrogel (usually polyacrylamide or agarose). Recently, model environments have
been created from arrays of precisely positioned microfabricated pillars. Long poly-
mers in such confined media move by reptation (rather like a snake moving through
tall stiff grass—it is constrained laterally but canmove along its length), inwhich they
are confined to sliding along an imaginary tube between the pillars. The diffusivity
D is, as usual,

D = kB T/δ , (11.3)

where δ is the drag coefficient and equal to 2πηL , η being the viscosity of the solvent.
The time for the polymer to diffuse out of its tube of length L is

τ = L2/(2D) (11.4)

but, in that interval, the polymer would have moved a distance equal to Rg if it had
formed a Gaussian coil; the effective diffusion coefficient in the gel is then found
from Dgel/D = (Rg/L)2; hence,

Dgel = pkB T

12πηL2 . (11.5)
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Under the action of a relatively weak electric field and provided L is not too great,
the mobility of the DNA in the gel is

μ = σp√
12πηL

, (11.6)

where σ is the charge per unit length of the DNA.2

Problem. On the basis of the above, devise a laboratory technique (including quan-
titative estimation of parameters for design and operation) for separating different
molecules of DNA.

11.4 RNA

Ribonucleic acid, RNA, is rather similar to DNA. The most prominent difference is
that the sugar is ribose rather than deoxyribose and that uracil rather than thymine is
used as one of the two purine bases. These differences have considerable structural
consequences. RNAdoes not occur as double helices; instead, base pairing is internal,
forming parallel strands, loops (“hairpins”), and bulges (Fig. 11.5). It can therefore
adopt very varied three-dimensional structures. It can pair (hybridize) with DNA.

RNA has five main functions: as a messenger (mRNA), acting as an intermediary
in protein synthesis; as an enzyme (ribozymes); as part (about 60% by weight, the
rest being protein) of the ribosome (rRNA); as the carrier for transferring amino
acids to the growing polypeptide chain synthesized at the ribosome (tRNA); and as
a modulator of DNA3 and mRNA interactions—small interfering RNA (siRNA; see
Sect. 10.7.4).

Since ribozymes can catalyse their own cleavage, RNA can give rise to evolving
systems; hence, it has been suggested that the earliest organisms used RNA rather
than DNA as their primary information carrier. Indeed, some extant viruses do use
RNA in that way.

A least-action approach—that is, minimizing the integral of the Lagrangian L
(i.e., the difference between the kinetic and potential energies)—has been success-
fully applied to predicting RNA structure. The key step was finding an appropriate
expression forL. The concept can be illustrated by focusing on loop closure, consid-
ered to be the most important folding event. The potential energy is the enthalpy (i.e.,
the number n of contacts—here, base-pairings), and the entropy yields the kinetic

2For polymers confined by their congeners, a given chain can slowly escape from its tube by
Brownian motion: The mobility μ of the whole chain N monomers long is μ1/N , where μ1 is the
mobility of one monomer. Hence, from the Einstein relation Dtube = μ1kB T/N and the relaxation
time (to which viscosity is proportional) for tube length L (∼N ) to be lost and created anew,
τtube ∼ L2/D = N L2/(μ1kB T ) ∼ N 3, in contrast to small molecules not undergoing reptation,
for which τ ∼ N .
3Including heterochromatin formation.

http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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Fig. 11.5 A piece of RNA
(from the Qβ replicase MDV-
1) showing the characteristic
loops formed by single-strand
base-pairing

parameter. Folding is a succession of events in which at each stage as many new
intramolecular contacts as possible are formed while minimizing the loss of confor-
mational freedom (the principle of sequential minimization of entropy loss; SMEL).
The entropy loss associated with loop closure is �Sloop (and the rate of loop closure
∼exp(�Sloop)); the function to be minimized is therefore exp(−�Sloop/R)/n. A
quantitative expression for �Sloop can be found by noting that the N monomers in
an unstrained loop (N ≥ 4) have essentially two possible conformations, pointing
either inward or outward. For loops smaller than a critical size N0, the inward ones
are in an apolar environment, since the enclosedwater no longer has bulk properties,4

4See Sinanoǧlu (1981).
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and the outward ones are in polar bulk water; hence the electrostatic charges on the
ionized phosphate moieties of the bases will tend to point outward. For N < N0,
�Sloop = −RN ln 2, and for N > N0, the Jacobson-Stockmayer approximation
based on excluded volume yields �Sloop ∼ R ln N . This allows L to be completely
specified.5

11.5 Proteins

Proteins are appropriately named after the mythological being Proteus, who could
assume many forms. The main functions of proteins are structural and catalytic. The
catalytic function is especially important, for almost all of the other macromolecules
of life, as well as small metabolites, are synthesized with the help of enzymes (cata-
lysts). A rough overview of the protein world reveals the existence of the following:

Small polypeptides typically with no definite structure, acting as hormones, tox-
ins, and so forth6 (examples: bradykinin, mellitin);

Globular proteins typically able to assume a small number of stable config-
urations. This is the most numerous and varied class of proteins, comprising
enzymes, transporters, regulators, motors, and so forth (examples: glucose oxi-
dase, haemoglobin, kinesin, tumour necrosis factor α). Others in this class can
polymerize to form fairly rigid rods (examples: flagellin, tubulin);

Fibrous proteins, which may be very long. They often have modular structures
with many identical or at least very similar modules, which are folded up into
small globules (“globulets”) joined by short linker sections (“beads on a string”).7

Their rôle is mostly structural, both within and without the cell, but they actively
interact with objects in their environment (e.g., neurites growing on them; i.e.,
as extracellular basement membranes they show chemical specificity) (examples:
actin, collagen, laminin);

Glycoproteins, which may be very large, such that they form gels by entangle-
ment. The polypeptide backbone is extensively decorated with relatively short
polysaccharides. Typically they act as lubricants and engulfers (example: mucin);

Membrane proteins, which are also globular, but permanently embedded (tran-
versally) in a lipid bilayer membrane. They mainly function as channels, energy
and signal transducers, andmotors (examples: ATPase, bacteriorhodopsin, porin).

5See Fernández and Cendra (1996).
6See Zamyatnin et al. (2006).
7Rocco et al. (1987) describe this for fibronectin.
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11.5.1 Amino Acids

The basic structure of an amino acid is H2N–C(α)HR–COOH. At physiological
pH, amino acids exist in zwitterionic form, H3N+–C(α)HR–COO−. R denotes the
variable side chain (residue); except for glycine (R=H), the C(α) is asymmetric and
hence chiral. The different residues are listed in Table11.6.

Problem. Compare the abundances given in Table11.6 with those predicted from
Table3.1, assuming that each nucleic acid triplet occurs with equal probability.

Amino acid polymerization takes place via elimination of water and the formation
of the so-called peptide bond.Hence, a tripeptidewith residues R1, R2, andR3 has the
structure H2N–C(α)HR1–CO–N–C(α)HR2–CO–N–C(α)HR3–COOH. Amino acids

Table 11.6 The natural amino acids in alphabetical order

Name Three-letter One-letter code Polaritya Formulab Ac

abbreviations

Alanine ala A A –CH3 8.2

Arginine arg R + –(CH2)3–NH–C(NH2)
+
2 3.9

Asparagine asn N P –CH2–CONH2 4.4

Aspartic acid asp D − –CH2–COO− 4.8

Cysteine cys C P –CH2–SH 3.4

Glutamine gln Q P –(CH2)2–CONH2 3.6

Glutamic acid glu E − –(CH2)2–COO− 4.8

Glycine gly G A –H 7.6

Histidine his H + –CH2–[C3N2H3]+ 2.2

Isoleucine ile I A –CH(CH3)–CH2–CH3 4.6

Leucine leu L A –CH2–CH(CH3)2 7.3

Lysine lys K + –(CH2)4–NH
+
3 7.0

Methionine met M A –(CH2)2–S–CH3 1.6

Phenylalanine phe F A –CH2–φ 3.5

Proline pro P A –[C3NH7]d 5.5

Serine ser S P –CH2–OH 7.8

Threonine thr T P –CH(OH)–CH3 6.5

Tryptophan trp W A –CH2–[C8NH6] 1.2

Tyrosine tyr Y P –CH2–φ–OH 3.4

Valine val V A –CH(CH3)2 6.9

φ denotes a benzene ring. Square brackets denote a ring structure
aA apolar; P polar; + positively charged (at physiological pH); − negatively charged
bOf the side chain (residue)
c% abundance, fromM.O.Dayhoff, ed.,Atlas of Protein Sequence and Structure, Vol. 5.Washington
DC: National Biomedical Research Foundation (1972)
dIncorporates the backbone –NH2 in a ring structure

http://dx.doi.org/10.1007/978-1-4471-6702-0_3
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Fig. 11.6 Hydrogen-bonding
capabilities of the peptide
backbone and the polar
residues (after Baker and
Hubbard (1984)). Residues
not shown are incapable of
hydrogen bond formation

polymerized into a polypeptide chain are usually called peptides. The CO–N bond
is in resonance with the C=O bond and is therefore rigid, the CO–N triatom system
being planar; but the N–C(α) and C(α)HR1–CO bonds are free to rotate indepen-
dently. Two dihedral angles, φ and ψ respectively, per amino acid therefore suffice
to completely characterize the conformation of a polypeptide chain. A Ramachan-
dran plot of ψ versus φ can be constructed for each amino acid showing the allowed
conformations; constraints arise due to the overlaps between the atoms attached to
the N–C(α)–C backbone.8

The amino acids can be classified in several ways according to their residues.
A binary classification groups them as apolar (incapable of hydrogen bonding) or
polar (see Fig. 11.6). The polar residues can be further classified into net hydrogen
bond donors and acceptors. Other binary classifications are electrostatically charged
(ionizable) and uncharged; big and small; and glycine or not.

8Another kind of Ramachandran plot is used to represent the structure of an entire polypeptide
chain, by plotting the actual values of ψ versus φ in the folded structure of each amino acid.



188 11 The Molecules of Life

11.5.2 Protein Folding and Interaction

Proteins are synthesized in vivo by the consecutive addition of amino acids to form
an elongating peptide chain with the conformation of a random coil in the aqueous
cytoplasm. Native globular proteins are compact stable structures with no or very
few polar residues in their interior. The transition from a random coil to an ordered
globule is called folding.

The governing feature of the polypeptide is the ability of the peptide unit –N–C–
C(=O)– to accept and donate H-bonds. Geometrical constraints allow the i th residue
in a chain to bond with the (i ± 3)th residues to form the α-helix, which is the
primary structural element of proteins. Very simple polypeptides (e.g., polyalanine)
form a pure α-helix. Most globular proteins, made up of many different amino acids,
contain short α-helices joined by turns—short polypeptide segments of no special
structure. The other main structural element is the β-sheet, in which the H-bonds are
formed between peptides distant along the chain.9

The formation of these H-bonds has to, and does, take place in the presence a
huge excess of water. Water is an excellent donor and acceptor of H-bonds and
strongly competes for the intraprotein ones. Successful folding therefore depends on
the ability of the protein to isolate the structurally important H-bonds from water;
structural integrity requires that the backbone H-bonds be kept dry. The energetic
importance of H-bond wrapping (i.e., protection from water) can be seen by noting
that the energy of a hydrogen bond is strongly context-dependent. In water, it is about
2kJ/mol; in vacuo, it increases eightfold to tenfold. Wrapping will therefore greatly
contribute to the enthalpic stabilization of globular protein conformation.

A poorly desolvated H-bond is called a dehydron.10 The dehydron is under-
wrapped and, therefore, overexposed towater (i.e.,wet), because there are insufficient
apolar groups in its vicinity. The only way for a protein to diminish the presence of
water around a hydrogen bond is to bring apolar residues unable to form H-bonds
with water into its vicinity; by keeping water away, hydrophobic groups, such as
methyl and ethyl, are powerful intramolecular H-bond enhancers. The dehydronic
force is thus a three-body force involving the H-bond donor, the H-bond acceptor,
and the apolar residue. It is formally defined as the drag exerted by a dehydron on a
test residue; that is,

F = −∇R

(
1

4πεR
qq ′

r0

)
, (11.7)

where R is the position of the hydrophobic test residue measured perpendicularly
from the H-bond, q and q ′ are the net charges, and r0 is the O–H distance of the
H-bond. Typically, F is about 7 pN at R = 6Å.

9As shown in Fig. 11.6, some residues can also participate in hydrogen bonding, but the backbone
peptide H-bonds (or potential H-bond donors and acceptors) are of course more numerous and,
hence, more significant.
10The dehydron concept is due to A. Fernández. See, for example, Fernández and Scott (2003) and
Fernández et al. (2002, 2003).
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The three-dimensional structure of a protein (as encoded in a pdb file) can be inter-
rogated to reveal dehydrons. Hydrogen bonds are operationally defined as satisfying
the criteria of an N–O distance of 2.5–3.5Å and the angle between the NH and CO
bonds equal to 45◦. The dehydration domain of an H-bond is defined as two spheres
of equal size centred on the C(α)s of the amino acids paired by the H-bond. The
radius of the spheres (around 6.5–7Å) is chosen to slightly exceed the typical dis-
tance between nonadjacent C(α)s; hence, the spheres necessarily interact. The extent
of wrapping is given by the number ρ of hydrocarbon groups within the dehydration
domains. A well-wrapped H-bond has ρ = 15; most soluble monomeric globular
proteins have a ρ around this value, averaged over all the backbone H-bonds.

Wrapping defects are decisive determinants of protein–protein (and other) inter-
actions. If the stable conformation of a globular protein is such that there are some
unavoidably underwrapped H-bonds on its solvent-acessible surface, then that pro-
tein will be sticky; the underwrapped H-bonds will be hotbeds of stickiness.11

Any other surface able to provide an appropriate arrangement of apolar groups
will strongly bind to the dehydronic region (provided that geometric constraints—
shape complementarity—are satisfied). The completion of the desolvation shell of
a structure-determining H-bond has the same significance in understanding protein
structure and interactions as completing electron shells has in understanding the peri-
odic table of the elements in chemistry. Indeed, the dehydron concept is needed to
computationally fold a peptide chain ab initio.

Examination of protein-protein interaction interfaces fully bears out the dehy-
dron interpretation. Appropriate complementarity is achieved by overexposed apolar
groups and dehydrons (rather than H-bond acceptors and donors, or positively and
negatively ionized residues, although these may play a minor rôle). One also notes
that each subunit of haemoglobin, a very stable and soluble (i.e., nonsticky) protein,
has just three dehydrons: Two are at the interface with the other subunits, and one is
the bond connecting residues 5 and 8 (i.e., flanking the sickle cell anaemia mutation
site at residue 6). In contrast, the prion protein, which is pathologically sticky, has
an extraordinarily high density of dehydrons (mean ρ is only about 11).

There are also evolutionary implications. It has long been realized that the evolu-
tion of proteins via mutations in their corresponding genes is highly constrained by
the need to maintain the web of functional interactions. There is a general tendency
for proteins in more evolved species to be able to participate in more interactions;
they have more dehydrons. For example, mollusk myoglobin is a perfectly wrapped
protein and functions as a loner. Whale myoglobin is in an intermediate position, and
human myoglobin is poorly wrapped, hence sticky, and operates together with other
proteins as a team. Although the folds in a protein of given function are conserved
as species diverge, wrapping is not (even though the sequence homology might still
be as much as 30%). Structural integrity becomes progressively more reliant on the
interactive context as a species becomes more advanced.

11Empirically, a certain threshold density of dehydrons per unit area should be exceeded for a
surface to qualify as sticky.
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A corollary is that the proteins of more complex species are also more vulnerable
to move into pathological states. The prion diseases form a good example; they are
unknown in microbes and lower animals. Moreover, they mainly attack the brain,
the most sophisticated and complex organ in the living world.

11.5.3 Experimental Techniques for Protein Structure
Determination

High-throughput methodology (also called structural genomics) comprises the fol-
lowing steps:

1. Select the gene for the protein of interest.
2. Make the corresponding cDNA.
3. Insert the cDNA into an expression system.
4. Grow large volumes of the protein in culture (if necessary with appropriate iso-

topic labelling of C and N).12

5. Purify the protein (using affinity chromatography).
6. Crystallize the protein (often unusual salt conditions are required) and record

the X-ray diffractogram,13 or carry out nuclear magnetic resonance spectroscopy
(one or more of 1H, 13C, 15N) with a fairly concentrated solution of the protein to
yield an adjacency matrix (cf. Sect. 7.2) from which the pattern of through-bond
and through-space couplings can be derived.

7. Calculate the atomic coordinates.
8. Refine the structure by minimizing interatomic potentials, or use Ramachandran

plots.

Under favourable conditions, X-ray diffraction and nuclearmagnetic resonance spec-
troscopy (n.m.r.) can yield structures at a resolution of 1Å. Some of the difficulties
in these procedures are as follows:

1. The protein may not crystallize. Membrane proteins are especially problematical,
but their structures may be obtainable from high-resolution electron diffraction
of two-dimensional arrays, or by crystallizing them in a cubic-phase lipid.

2. Hydrogen atoms are insufficiently electron dense to be registered in the X-ray
diffractogram (they are detectable in experimentally more onerous neutron dif-
fraction).

12For some of the problems associated with the production of recombinant proteins, see Protein
production and purification, Nature Methods 5 (2008) 135–146.
13Multiple isomorphous replacement—MIR—whereby a few heavy atoms are introduced into the
protein, which is then remeasured, is used to determine the diffraction phases. The heavy atoms
should not, of course, induce any changes in the protein structure.

http://dx.doi.org/10.1007/978-1-4471-6702-0_7
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3. Energy refinement will yield the majority structure. Most proteins have two or
more stable structures, whichmay be present simultaneously, although in unequal
proportions.

4. The crystal structure, or the structure in concentrated solution, may not be repre-
sentative of the native structure(s).

5. Nuclear magnetic resonance cannot cope with large proteins (the spectra become
too complicated, and the assignment of peaks to the individual amino acids along
the sequence becomes problematical).

6. Nuclear magnetic resonance yields a set of distance constraints, but there are
usually so many that the problem is overdetermined, and no physically possible
structure can satisfy all of them.

Protein stability can be assessed by determining the structure of a protein at different
temperatures. Since thermal denaturation is accompanied by a large change in spe-
cific heat, whose midpoint provides a quantitative parameter characterizing stability,
microcalorimetry is a useful technique for assessing stability.

11.5.4 Protein Structure Overview

The techniques described in the previous subsection revealed that proteins have a
compact structure akin to a ribbon folded back and forth. Drop a piece of thick
string about a metre long on a table, pick it up, and push it together between one’s
hands. This gives a fair impression of typical protein structure at very low resolution.
α-helices and β-sheets are called secondary structures (the primary structure is the
sequence of amino acids). The arrangement of secondary structure elements is called
the tertiary structure. Quaternary structure denotes arrangements of individual folded
peptide chains (e.g., subunits) to form supramolecular complexes. Quinary structure
is the network of other proteins with which a protein interacts.

The number of basic shapes in which proteins fold (i.e., the variety of tertiary
structures) seems to be far smaller (∼104) than the number of possible sequences.
Individual examples of sequences with less than 10% homology folding into essen-
tially the same structure are known. Some folds are very common, whereas others
are rare.

11.6 Polysaccharides

Monosaccharides (sugars) are carbohydrates whose chemical composition is give by
the empirical formula (CH2O)n , with typically n = 3, 4, 5, and 6. They are linked
together via one of their oxygen atoms in an ether-like linkage to form oligomers and
polymers. Saccharide monomers have many –OH groups, and there is much variety
in their choice for linking. Some oligosaccharides are metabolic intermediates; they
are very often used to modify proteins and lipids, with profound influence on their
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structure and reactivity.14 For example, if one sugar is missing from transferrin, an
iron-transporting protein in the blood with several glycosylated amino acids, the
bearer has an abnormal skin colour, liver problems, and so forth. Oligosaccharides
are extensively used to confer specificity of binding (e.g., in the immune system).
Longer polysaccharides are used to store energy and as structural components. Their
assembly is not templated but is accomplished by enzymes. There is considerable
variety in the sequence of nominally identical heteroöligosaccharides.

Cellulose is a long unbranched chain of glucose monomers linked head to tail.
As the major constituent of plant cell walls, cellulose is probably more abundant on
Earth than any other organic material. The chains are packed side by side to form
microfibrils, which are typically a mixture of two crystalline forms, Iα and Iβ , and
whose diameter ranges from about 3nm in most plants to about 20nm in sea squirts.
The chains are held together by H-bonds.15

Problem. Examine whether polysaccharides could be used as the primary infor-
mation carrier in a cell.

11.7 Lipids

Lipids are not polymers, but in water they spontaneously assemble to form large
supramolecular structures (planar bilayermembranes and closedbilayer shells, called
vesicles). Lipids are amphiphiles; that is, they consist of a polar moiety (the “head”)
attached to an apolar one (the “tail,” typically an alkane chain). The structures formed
when lipids are added to water depend on the relative sizes of the polar and apolar
moieties. If the tail is thinner than the head, as with many detergents, micelles, com-
pact spherical aggregates with all the head facing outward, may form. Natural lipid
molecules are typically roughly cylindrical—the head has about the same diameter as
the tail—and readily form planar or slightly curved membranes (Fig. 11.7). Obcon-
ical shapes (head larger than tail) favour convex structures of small radius, such as
endosomes or the borders of large (hydrophilic) pores in planar bilayer membranes.
Conical shapes (such as phosphatidylethanolamine, which has a very small head)
oppose this tendency.

A large number of natural lipids are known and found in natural membranes; both
the head groups and tails can be varied. A small selection is shown in Fig. 11.8. The
lipid repertoire of a cell or organism is called the “lipidome”. This diversity allows
the shape, fluidity, permeability, affinity for macromolecules, and so on of mem-
branes to be adjusted. The biosynthesis of lipids and other membrane components
such as cholesterol is, of course, carried out by enzymes, but the regulation of their

14See Dwek and Butters (2002) for an overview.
15See also “Symbols for specifying the confirmation of polysaccharide chains”, Eur. J. Biochem.
131 (1983) 5–7, or Pure Appl. Chem. 55 (1983) 1269–1272.
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Fig. 11.7 A bilayer lipid membrane formed by two apposed sheets of molecules

Fig. 11.8 Some naturally occurring lipids and membrane components. 1, a fatty acid; 2, phos-
phatidic acid; 3, phosphatidylethanolamine; 4, phosphatidylcholine; 5, cardiolipin (diphosphatidyl-
glycerol); 6, cholesterol
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abundance and activity is not well understood, and the importance of their variety
has probably been underestimated. Most enzymes are attached to membranes and
the lipids probably play a far more active rôle than merely functioning as a passive
matrix for the protein—which may constitute more than 50% of the membrane. The
covalent attachment of a lipid molecule to a protein, typically at a terminal amino
acid, is a significant form of post-translational modification.
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Figure12.1 is a simplified version of Fig. 10.1 that highlights the principle objects of
investigation of bioinformatics. The field could be said to have begun with individual
gene (and hence protein) sequences; typical problems addressed were the extraction
of phyologenies from comparing sequences of the same protein over a wide range of
different species and the identification of a gene of unknown function by comparison
with the knowledge base of sequences of known function, via the inferential route:

sequence homology ⇒ structural homology ⇒ functional homology. (12.1)

There are, however, plenty of examples of structurally similar proteins with different
sequences or functionally different proteins with similar structures. Associated with
these endeavours were technical problems of setting up and maintaining databases
of sequences and structures.

The bioinformatics landscape was dramatically transformed by the availability
of whole genomes and, at roughly the same time (although there was no especial
connexion between the developments), whole proteomes and whole metabolomes.
Farwider-ranging comparisons could nowbe carried out; in particular, a global vision
of regulation seemed to be within grasp. Part III focuses on these developments;
Table12.1 recalls the magnitude, at the level of the raw materials, of the problems
to be solved.

Genomics is concerned with the analysis of gene sequences, and there are two
main territories of this work: (1) comparison of gene sequences, that is analysis of
the relation of a given sequence with other sequences (external correlations); and
(2) analysis of the succession of symbols in sequences (internal correlations). The
first attempts to elucidate the function of sequences whose function is unknown
by comparing the “unknown” sequence with sequences of known function. It is
based on the principles that similar sequences encode similar protein structures,
and similar structures encode similar functions (there are, however, many examples
for which these principles do not hold). One also compares sequences known to
code for the same protein (functionally speaking) in different organisms, in order
to deduce phylogenetic relationships. A further branch of this territory compares
the sequences of healthy and diseased organisms, in an attempt to assign genetic
causes to disease. The second territory attempts to find genes (and, ultimately, other
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Fig. 12.1 The relation
among genes, mRNA, pro-
teins and metabolites. The
curved arrows in the upper
half of the diagram denote
regulatory processes

Table 12.1 Approximate numbers (variety) of different objects in the human body

Object Number

Genes 30000

mRNA 105

Proteinsa 3 × 105

Expressed proteinsb 103–104

Cell types 220

Cellsc 1013–1014

aPotential repertoire
bIn a given cell type
cExcluding microbial cells hosted within the body and which may be comparably numerous

functionally important sequences such as those involved in regulation) via linguistic
inhomogeneities and to assign function to the genes by searching for regularities
(the “grammar” of the sequence). In its purest form, genomics could be viewed
simply as the study of the nonrandomness of DNA sequences. This endeavour is
still inchoate, since the regularities and their relation to function are not understood.
One may, however, be able to predict the structure from the sequence, which can
then be used to advance the search for function. Even coarse indications may be
useful; for example, transmembrane proteins typically possess several α-helices,
traversing the lipid bilayer, with characteristically hydrophobic amino acids. The
term “structural genomics” denotes the assignment of structure to a gene product by
any means available; “functional genomics” refers to the assignment of function to
a gene product.

Proteomics focuses on gene products (i.e., proteins). The primary task is to cor-
relate the pattern of gene expression with the state of the organism. For any given
(eukaryotic) cell, typically only 10%of the genes are actually translated into proteins
under a given set of conditions and at a particular epoch in the cell’s life. On the other
hand, a given gene sequence can give rise to tens of different proteins, by varying
the arrangements of the exons (Sect. 10.7.5) and by post-translational modification.
Insofar as proteins are the primary vehicle of phenotype, proteomics constitutes a

http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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communication channel between genotype and phenotype. One may think of the
proteome as the “vocabulary” of the genome: Just as we use words to convey ideas
and build up our individual characters, so is the genome helpless without proteins.
Clearly, the proteome forms the molecular core of epigenetics. Once expression data
are available, work can start on their analysis. Via the proteome, genetic regulatory
networks can be elucidated.

The raw data of proteomics is either the transcriptome—a list of all the transcribed
mRNAs and their abundances at a particular epoch—or the proteome—a list of all
the translated proteins and their abundances, or net rates of synthesis, at a partic-
ular epoch. Given the processing that takes place between transcript and protein
(Sect. 10.7.5), it is not surprising that there are often large differences between the
transcriptome and proteome. Experimentally, the compiling of such a list involves
separating the proteins from one another and then identifying them.

Comparison between the proteomes of diseased and healthy organisms forms
the foundation of the molecular diagnosis of disease. This is just one of the many
applications of bioinformatics to medicine, some of which are discussed in a chapter
near the end of this Part.

Modern ecosystems management has recently acquired a strong informational
content and, given its current topicality due to concerns about global warming, is
discussed in a separate chapter.

An important division of proteomics deals with the interactions between proteins.
It is indeed so important that a special word has been given to it—interactomics. The
raw data of interactomics are a list of the affinities of each protein with every other
protein in the cell, as well as nonprotein material such as lipid bilayers and polysac-
charides, and DNA and RNA of course. Another division is called glycomics—the
investigation of protein glycosylation.

Computational proteomics refers to the study of entire proteomes using the
genome, looking, for example, for structural features such as transmembrane helices.
Here the computational approach is especially important since proteins embedded
in lipid membranes by three or more transmembrane helices are poorly recovered by
current methods of experimental proteomics.

The investigation of protein products is called metabolomics. The metabolome
comprises all of the molecules in the cell apart from proteins and DNA (lipids and
polysaccharides are also usually excluded), and metabolomics is concerned with
their identification, abundances and localization.

Recently, “-omics” has moved beyond the objects listed in Table12.1 to encom-
pass the behaviour of living organisms (ethomics), which is discussed in the chapter
on phenomics. It is to be hoped that in due course the work being done to quanti-
tatively observe behaviour and systematize the observations will meet the elegant
theoretical concept of directive correlation (Sect. 9.2) in order to provide underlying,
fundamental mechanisms.

The living information processor par excellence is of course the brain, and with
the hope of bringing together the presently rather separate fields of bioinformat-
ics and neurosciences it is the topic of a brief chapter. Information processing by
individual cells such as an amoeba has recently been scrutinized and computational

http://dx.doi.org/10.1007/978-1-4471-6702-0_10
http://dx.doi.org/10.1007/978-1-4471-6702-0_9
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methods extracted from its behaviour.1 Conversely, biophysicochemical informa-
tion processing (another rather new field) means constructing information proces-
sors using biological components such as lipid bilayer membranes and enzymes.2

Working integrated information processing systems are typically based on a planar
membrane of thickness L in which an enzyme is homogeneously immobilized. Their
operation can be understood through consideration of (a) transport phenomena and
(b) reaction kinetics, and coupling between them.

The general expression of flux density J for the i th molecular entity is

Ji = −Di
∂ci

∂x
+ Di

Zi F

RT
ci E (12.2)

where D is i’s diffusivity, c its concentration, x a spatial coordinate, Z i’s charge, F
the Faraday constant, and E the electric field. Mass balance is expressed by:

∂ci

∂t
= ∂ Ji

∂x
+ vi (12.3)

where v accounts for all chemical reactions. One could write a similar expression for
charge balance but it may be assumed that in practice sufficient supporting electrolyte
is present for that to become unimportant. Combining (12.2) with (12.3) yields

∂ci

∂t
= Di

∂2ci

∂x2
− Di

zi F

RT
E

∂ci

∂x
+ vi . (12.4)

This is the fundamental equation of biophysicochemical information processing.3

Systems constructed on this basis can have fully integrated functions, unlike biosen-
sors, in which the biosensing element is coupled to a physical transducer. Some
examples of the information processing achievable in such systems are active trans-
port (against a concentration gradient), clocks, mathematical operations (addition,
multiplication etc.), control (e.g. stopping a function), storage and amplification (see
footnote 2).

As a more detailed example (see footnote 2), consider a membrane in which
enzymeE1 is distributed homogeneously in the left half of amembrane separating two
compartments containing a substance S, the concentration of S being significantly
higher in the right hand compartment than in the left hand one, and enzyme E2
distributed homogeneously in the right half of a membrane. Applying Eq. (12.4) in
the absence of an electric field (E = 0) yields:

∂s

∂t
= DS

∂2s

∂x2
+ v2 − v1 ; (12.5)

∂p

∂t
= DP

∂2 p

∂x2
+ v1 − v2 . (12.6)

where s and p are respectively the concentrations of substrate S and product P. Some
of the solutions of this two-equation set have asymmetrical concentration profiles

1Nakagaki et al. (2009).
2Valleton (1990).
3Mostly, systems of these equations (one for each i) have to be solved numerically.
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s(x) and p(x): for example, depletion of S in the left hand sidewhere E1 operates, and
accumulation in the right hand side where E2 operates. Such a profile corresponds
to active transport against the concentration gradient.
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We start with a couple of definitions: The genome is the ensemble of genes in an
organism, and genomics is the study of the genome. The major goal of genomics is
to determine the function of each gene in the genome (i.e., to annotate the sequence).
This is sometimes expressly designated functional genomics. Figure13.1 gives an
outline of the topic. The starting point is the gene; we shall not deal with gene
mapping, since it is already well covered in genetics textbooks. We shall view the
primary experimental data of genomics as the actual nucleotide sequence and reiterate
that genomics could simply be viewed as the study of the nonrandomness of DNA
sequences.

The first section of this chapter will briefly review experimental DNA sequencing.
The next essential step is to identify the genes. Initially, this was the sole or main
preoccupation, but since then it is recognized that promoter and other sequences
(including those generating small interfering RNA) possibly involved in regulation
must also be considered—in brief, all biochemically active sites—since understand-
ing of even a minimal phenotype must encompass the regulatory network controlling
expression and activity, as well as the expressible genes themselves.

Once the coding sequences (i.e., the genes) have been identified, in principle one
can determine the basic protein structure from the sequence alone (cf. Sect. 11.5.2).
Once structure is available, function might be deduced; there is no general algorithm
for doing so, but comparison with proteins of known function whose structure is
already known may help to elucidate the function of new genes. It might not even be
necessary to pass by the intermediate step of structure in order to deduce the function
of a gene or at least to be able to make a good guess about it; merely comparing
sequences of unknown function with sequences of known function, focusing on
the sequence similarities, may be sufficient. The comparison of sequences of genes
coding for the same (functionally speaking) protein in different species forms the
basis for constructing molecular phylogenies, via their differences.

© Springer-Verlag London 2015
J. Ramsden, Bioinformatics, Computational Biology 21,
DOI 10.1007/978-1-4471-6702-0_13
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Fig. 13.1 The major parts
of genomics and their
interrelationships. The
passage from sequence to
function can bypass
structure via comparison with
sequences of known structure

The huge collections of gene and protein data now available have encouraged the
so-called “hypothesis-free” or “minimalist” approach to sequence analysis.1 This is
discussed in Sect. 13.7. Possibly the greatest value of this approach is not so much
in elucidating particular phenomena such as a function of a specific gene, but rather
in approaching an answer to the broader question of the meaning of the genome
sequence, without the distraction of imposed categories such as “gene”, which may
be, as is currently all too apparent, very difficult to define unambiguously.

13.1 DNA Sequencing

The rawdata used for genomic analysis areDNAsequences. This and the next section
briefly describe the major experimental approaches involved. For investigating the
RNA in the cell—the RNome, which has taken on a renewed importance since the
discovery of the so-called “noncoding” RNA (i.e., not ultimately translated into
protein), the RNA would normally first have to be converted into complementary
DNA (cDNA).

1It is sometimes said of this approach, rather disparagingly perhaps, that “one can apparently make
significant discoveries about a biological phenomenon without insight or intuition”. Possibly this
criticism derives from J.S. Mill’s view that deduction cannot produce new knowledge. At any rate,
it belies the fact that in reality once some unsuspected structural feature in the sequence has been
discovered purely by manipulating the symbols, a great deal of insight and intuition is generally
applied to make sense of it.
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13.1.1 Extraction of Nucleic Acids

The following steps are typical of what is required:

1. Cell separation from the medium in which they are grown by filtration or cen-
trifugation;

2. Cell lysis (i.e., disruption of the cell membranes, mechanically or with detergent,
enzymes, etc.) and elimination of cell debris;

3. Isolation of the nucleic acids by selective adsorption followed by washing and
elution.2

13.1.2 The Polymerase Chain Reaction

If the amount of DNA is very small, it can be multiply copied (“amplified”) by the
polymerase chain reaction (PCR) before further analysis. The following steps are
involved:

1. Denature (separate) the two strands at 95 ◦C (i.e., melting).
2. Lower the temperature to 60 ◦C and add primer (i.e., short synthetic chains of

DNA that bind at the beginning, the so-called 3′ end, of the sequence to be
amplified).

3. AddDNApolymerase (usually extracted from the thermophilic microbe Thermus
aquaticus and hence calledTaq polymerase) and deoxyribonuclease triphosphates
(dNTPs; i.e., an adequate supply of monomers); the polymerase synthesizes the
complementary strand starting from the primer.

4. Stop DNA synthesis (e.g., by adding an auxiliary primer complementary to the
end of the section of the template to be copied); go to step 1.

The concentration of single strands doubles on each cycle up to about 20 repetitions,
after which it declines. There is of course no proofreading. Miniature bioMEMS
(lab-on-a-chip) devices are now available for PCR, which operate with only a few
nanolitres of solution, and enable much faster operation.

13.1.3 Sequencing

The classical technique is that devised by Sanger. One starts with many single-
stranded copies of the unknown sequence, to which a known short marker sequence
has been joined at one end. An oligonucleotide primer complementary to the marker
is added, together with DNA polymerase and nucleotides. A small proportion of the

2This procedure may yield a preparation containing RNA as well as DNA, but RNA binds prefer-
entially to boronate and thus can be separated from DNA.
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nucleotides are fluorescently labelled dideoxynucleotides lacking the hydroxyl group
necessary for chain extension. Hybridization of the primer to the marker initiates
DNA polymerization templated by the unknown sequence. Whenever one of the
dideoxynucleotides is incorporated, extension of that chain is terminated. After the
system has been allowed to run for a time, such that all possible lengths may be
presumed to have been synthesized, the DNA is separated into single strands and
separated electrophoretically on a gel. The electrophoretogram (sometimes referred
to as an electropherogram) shows successive peaks differing in size byonenucleotide.
Since the dideoxynucleotides are labelled with a different fluorophore for each base,
the successive nucleotides in the unknown sequence can be read off by observing
the fluorescence of the consecutive peaks.

A useful approach for very long unknown sequences (such as whole genomes)
is to randomly fragment the entire genome (e.g., using ultrasound). The fragments,
approximately two megabases long and sufficient to cover the genome fivefold to
tenfold, are cloned into a plasmid vector,3 inserted into a bacterial genome and
multiplied. The extracted and purified DNA fragments are then sequenced as above.
The presence of overlaps allows the original sequence to be reconstructed.4 This
method is usually called shotgun sequencing. Of course, overlaps are not guaranteed,
but gaps can be filled in principle by conventional sequencing.5

Every aspect of sequencing (reagents, procedures, separation methods, etc.) has,
of course, been subject to much development and improvement since its invention
(in Sanger’s original method, the dideoxynucleotides were radioactively labelled),
and there are now high-throughput automated methods in routine use.

Another popular technique is pyrosequencing, whereby one kind of nucleotide
only is added to the polymerizing complementary chain; if it is complementary
to the unknown sequence at the actual position, pyrophosphate is released upon
incorporation of the complementary nucleotide. Using some other reagents, this
is converted to ATP, which is then hydrolysed by the chemiluminescent enzyme
luciferin, yielding a brief pulse of detectable light. The technique is suitable for
automation. It is, however, practically limited to sequencing strands shorter than
about 150 base pairs.

New techniques are constantly being developed, with special interest being shown
in single-molecule sequencing, which would obviate the need for amplification of
the unknown DNA.6 One should also note inexpensive methods designed to detect
the presence of a mutation in a sequence; steady progress in automation is enabling
ever larger pieces of DNA to be tackled.

3In this context, “vector” is used in the sense of vehicle.
4This is somewhat related to Kruskal’s multidimensional scaling (MD-SCAL or MDS) analysis.
5Unambiguously assembled nonoverlapping sequences are called “contigs” .
6See França et al. (2002) for a review, and Braslavsky et al. (2003) for a recent single-molecule
technique.
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13.1.4 Expressed Sequence Tags

Expressed sequence tags (ESTs) are derived from the cDNA complementary to
mRNA. They consist of the sequence of typically 200–600 bases of a gene, suf-
ficient to uniquely identify the gene. The importance of ESTs is, however, tending
to diminish as sequencing methods become more powerful.

Expressed sequence tags are generated by isolating the mRNA from a particular
cell line or tissue and reverse-transcribing it into cDNA, which is then cloned into a
vector to make a “library”.7 Some 400 bases from the ends of individual clones are
then sequenced.

If they overlap, ESTs can be used to reconstruct the whole sequence as in shotgun
sequencing, but their primary use is to facilitate the rapid identification of DNA.
For various reasons, not least low-fidelity transcription, the sequences are typically
considerably less reliable than those generated by conventional gene sequencing.

13.2 DNAMethylation Profiling

Although the overall proportion of methylated DNA can be determined chemically,
in order to properly understand the regulatory rôle of methylation, it is necessary
to determine the methylation status of each base in sequence (bearing in mind that
only CpG is methylated). The methylation status of a nucleotide can be determined
by pyrosequencing (Sect. 13.1.3), but the technique is limited to relatively short
nucleotide sequences. A more recent method relies on treating DNA with bisulfite
(under acidic conditions cytosine is converted to uracil, and methylated cytosine is
not) and comparing the sequencewith the untreated one.8 Even newer is the technique
calledMethylCap-seq:9 The DNA is sonicated, fragmenting it to pieces with a length
of around 300 base pairs, which are then exposed to MBD-GST immobilized on
magnetic beads, which capturesmethylated fragments at low concentrations ofNaCl;
a gradient of increasing salt concentration elutes the DNA fragments from the beads.
Epigenetic profiling is of growing importance to medicine.10

13.3 Gene Identification

The ultimate goal of gene identification (or “gene prediction”) is automatic annota-
tion: to identify all biochemically active portions of the genome by algorithmically
processing the sequence and to predict the reactions and reaction products of those

7In this context, “library” is used merely to denote “collection”.
8Bibikova et al. (2006); Bibikova and Fan (2010).
9Brinkman et al. (2010); for other methods see Zuo et al. (2009).
10See, e.g., Heyn and Esteller (2012).



208 13 Genomics

portions coding for proteins. At present we are still someway from this goal. Success
will not only allow one to discover the functions of natural genes but should also
enable the biochemistry of new, artificial sequences to be predicted and, ultimately,
to prescribe the sequence necessary to accomplish a given function.

In eukaryotes, the complicated exon–intron structure of the genome makes it par-
ticularly difficult to predict the course of the key operations of transcription, splic-
ing, and translation from sequence alone (even without the possibility that essential
instructions encoded in acylation of histones, etc. are transmitted epigenetically from
generation to generation).

Challenges remain in identifying the exons, introns, promoters, and so on in each
stretch of DNA, such that the exons could be grouped into genes and the promoters
assigned to the genes or groups of genes whose transcription they control. Other
tasks include the identification of those genes (in humans, mammals, etc.) believed
to originate from viruses and the localization of hypervariable regions (e.g., those
coding for immunoglobulins). Ultimately, the aim is to be able to understand the
relationships among the various elements of the genome.

Gene prediction can be divided into intrinsic (template) and extrinsic (lookup)
methods. The former are the best candidates for leading to fundamental insight into
how the gene works; if they are successful, they should furthermore then inevitably
provide the means to generalize from the biochemistry of natural sequences to yield
rules for designing new genes (and genomes) to fulfil specified functions. We shall
begin, however, by considering the conceptually simpler extrinsic methods.

13.4 Extrinsic Methods

The principle of the extrinsic or lookup method is to identify a gene by finding a
sufficiently similar known object in existing databases. Hence, the method is based
on sequence similarity (to be discussed in Sect. 13.4.2), using the still relatively
small core of genes identified by classical genetic and molecular biological studies
to prime the comparison; that is, a gene of unknown function is compared with the
database of sequences with known function. This approach reflects a widely used,
but not necessarily correct (or genuinely useful), assumption that similar sequences
have similar functionality.11 A major limitation of this approach is the fact that, at
present, about a third of the sequences of newly sequenced organisms turn out to
match no sufficiently similar known sequences in existing databanks. Furthermore,
errors in the sequences deposited in databases can pose a serious problem.

11Note that “homology” is defined as “similarity in structure of an organ or molecule, reflecting
a common evolutionary origin”. Sequence similarity is insufficient to establish homology, since
genomes contain both orthologous (related via common descent) and paralogous (resulting from
duplications within the genome) genes.



13.4 Extrinsic Methods 209

13.4.1 Database Reliability

An inference, especially a deductive one, drawn from data is only as good as the data
fromwhich it is formed. The question of the reliability of the data is certainly amatter
for legitimate concern. The most pernicious errors are wrong nucleic acid bases in
a sequence. The sources of such errors are legion and range from experimental
uncertainties to mistakes in typing the letters into a file using a keyboard. Of course,
these errors can be considered as a source of noise (i.e., equivocation) and handled
with the ideas developed earlier, especially in Chap.3. Undoubtedly there is a certain
redundancy in the sequences, but these questions of equivocation and redundancy in
database sequences and the consequences for deductive inference do not yet seem
to have been given the attention they deserve. In particular, there appears to be a
feeling associated with the “big data” movement that, provided one has enough data,
the errors will somehow be “averaged out” or “autocompensated”, although proper
justification for this notion is lacking.

13.4.2 Sequence Comparison and Alignment

The pairwise comparison of sequences is very widely used in bioinformatics. Evi-
dently, it is a subset of the general problem of pattern recognition (Sect. 8.2). If it
were only a question of finding matches to more or less lengthy blocks of symbol
sequences (e.g., the longest common subsequence; LCS), the taskwould be relatively
straightforward and the main work would be merely to assess the statistical signifi-
cance of the result; that is, compare with the null hypothesis that a match occurred
by chance (cf. Sect. 5.2.1). In reality, however, the two sequences one is trying to
compare differ due to mutations, insertions, and deletions (cf. Sect. 10.6.1), which
renders the problem considerably more complicated; one has to allow for gaps, and
one tries to make inferences from local alignments between subsequences. A typical
example of an attempt to align fragments of two nucleotide sequences is

A C G T A C G T A − G T

| | | | | | | |
A C − − A T G T A C G T

where vertical lines indicate matches. Note the gaps that have been inserted to
increase the number of matches. In the absence of gaps, one could simply compute
the Hamming distance between two sequences; the introduction of the possibility of
gaps introduces two problems: (i) the number of possible alignments becomes very
large and (ii) where are gaps to be placed in sequence space?

If no gaps are allowed, one assigns and sums scores for all possible pairs of aligned
substrings within the two sequences to be matched. If gaps are allowed, there are

(2n
n

)

http://dx.doi.org/10.1007/978-1-4471-6702-0_3
http://dx.doi.org/10.1007/978-1-4471-6702-0_8
http://dx.doi.org/10.1007/978-1-4471-6702-0_5
http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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possible alignments of two sequences each of length n.12 Even for moderate values
of n there are too many possibilities to be enumerated (problem (i), a computational
one). It is solved using dynamic programming algorithms (Sect. 13.4.4). Problem
(ii) is solved by devising a scoring system with which gaps and substitutions can be
assigned numerical values. Finally, one needs to assess the statistical significance of
the alignment. This is still an unsolved problem—let us call it problem (iii).

The essence of sequence alignment is to assign a score, or cost, for each possible
alignment; the one with the lowest cost, or highest score, is the best one, and if
aligning multiple sequences, degrees of kinship can be assigned on the basis of the
score, which has the form

total score = score for aligned pairs + score for gaps . (13.1)

The score is, in effect, the relative likelihood that a pair of sequences are related.
It represents distance, together with the operations (mutations and introduction of
gaps) required to edit one sequence onto the other. Sequence alignment attempts to
maximize the number ofmatcheswhileminimizing the number ofmutations andgaps
required in the editing process. Unfortunately, the relative weights of the terms on the
right-hand side of (13.1) are arbitrary. Themain approach to assigning weights to the
termsmore objectively is to studymany extant sequences from organisms one knows
from independent evidence to be related. In principle, under a given set of conditions
(e.g., a certain level of exposure to cosmic rays), a given mutation presumably has a
definite probability of occurrence; that is, it can, at least in principle, be derived from
an objective set of data according to the frequentist interpretation, but the practical
difficulties and the possibility that such probabilities may be specific to the sequence
neighbouring the mutation make this an unpromising approach.

Whereas with DNA sequences, a nucleotide is—at least to a first approximation—
either matched or not, with polypeptides a substitution might be sufficiently close
chemically so as to be functionally neutral. Hence, if alignments are carried out at
the level of amino acids, exact matches and substitutions are dealt with by compiling
an empirical table, based on chemical or biological knowledge or both, of degrees of
equivalence.13 There is no uniquely optimal table. To construct one, a good starting
point is the table of amino acids (Table11.6). Isoleucine should have about the same
score for substitution by leucine as for an exact match and so forth; substitution of
a polar for an apolar group or lysine for glutamic acid (say) would be given low or
negative scores. The biological approach is to look at the frequencies of the different
substitutions in pairs of proteins that can be considered to be functionally equivalent
from independent evidence (e.g., two enzymes that catalyse the same reaction).

In essence, the entries in a scoring matrix are numbers related to the probability of
a residue occurring in an alignment. Typically, they are calculated as (the logarithm

12This is obtained by considering the number of ways of intercalating two sequences while pre-
serving the order of symbols in each.
13For example, BLOSUM50, a 20 × 20 score matrix (histidine scores 10 if replacing histidine,
glutamine 0, alanine –3, and so on). The diagonal terms are not equal.

http://dx.doi.org/10.1007/978-1-4471-6702-0_11
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of) the probability of the “meaningful” occurrence of a pair of residues divided by
the probability of random occurrence. Probabilities of “meaningful” occurrences are
derived from actual alignments “known to be valid”. The inherent circularity of this
procedure gives it a temporary and provisional air.

In the case of gaps, the (negative) score might be a single value per gap or could
have two parameters: one for starting a gap, and another, multiplied by the gap length,
for continuing it (called an affine gap cost). This takes some slight account of possible
correlations in the history of changes presumed to have been responsible for causing
the divergence in sequences. The scoring of substitutions considers each mutation
to be an independent event, however.

In summary, the central themes of sequence comparison are:14 distance functions
appropriate in the absence of natural correspondence of elements; optimum corre-
spondences between sequences; and dynamic programming algorithms (Sect. 13.4.4)
for calculating the distances and optimum correspondences.

13.4.3 Trace,Alignment and Listing

These are, perhaps, the three most important modes of presentation for the analysis
of differences between sequences. Trace consists of the source sequence above and
the target sequence below, with lines, at most one per element and not crossing each
other, from some elements in the source to some in the target. The lines provide
at least a partial correspondence between source and target. There are two kinds of
matches of a pair: if the connected elements are the same, they are referred to as
an identity or a continuation; if they are different, a substitution. A source element
without a line is referred to as a deletion; a target element, an insertion (the term
indel means either an insertion or a deletion). This is illustrated below.

I

I

N

N

D

�����

T

U

E

S

���

R

T

E

R

�
�

S

Y

T
Note the substitution of Y by S.

Problem. Construct as many different analyses as possible of the above pair of
sequences using trace.

An alignment or matching consists of, again, the source sequence above and
the target below, forming a two-row matrix. Both rows can be interspersed with
null characters (represented by ∅—or simply a blank)—note that a column of null
characters is not permitted. Deletion has the null character below; a column with
the null character above is a substitution. The absence of ∅ denotes a match; if the

14Kruskal (1964), Chap.1 of Sankoff and Kruskal (1999).
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elements are equal it is a continuation, if unequal a substitution:
[
I N D U S T ∅ R ∅ Y ∅
I N ∅ ∅ ∅ T E R E S T

]

Problem. Construct as many different analyses as possible of the above pair of
sequences using alignment.

A third mode is called a listing or derivation; it consists of an alternating series of
sequences and elementary operations, successive sequences differing only in accord
with the interspersed elementary operation, as illustrated below:

INDUSTRY

delete D

INUSTRY

delete U

INSTRY

substitute Y by S

INSTRS

insert E

INSTERS

insert E

INSTERES

delete S

INTERES

insert T

INTEREST

Listing is of less practical use, but is a richer mode of analysis than the previous two.

13.4.4 Dynamic Programming Algorithms

The concept of dynamic programming comes from operations research, where it is
commonly used to solve problems that can be divided into stages with a decision
required at each stage. A good generic example is the problem of finding the shortest
path on a graph. The decisions are where to go next at each node. It is characteristic
that the decision at one stage transforms that state into a state in the next stage. Once
that is done, from the viewpoint of the current state the optimal decision for the
remaining states does not depend on the previous states or decisions. Hence, it is not
necessary to know how a node was reached, only that it was reached. A recursive
relationship identifies the optimal decision for stage M , given that stage M + 1 has
already been solved; the final stage must be solvable by itself.
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The following is a generic dynamic programming algorithm (DPA) for comparing
two strings S1 and S2 with M[i, j] = cost or score of S1[1..i] and S2[1.. j]:15

M[0, 0] = z

for each i in 1 .. S1.length

M[i,0] = f( M[i-1, 0 ], c(S1[i],"_" ) ) -- Boundary

for each j in 1 .. S2.length

M[0,j] = f( M[0, j-1], c("_", S2[j] ) ) -- conditions

for each i in 1 .. S1.length and j in 1 .. S2.length

M[i,j] = g(f(M[i-1, j-1], c(S1[i], S2[j])), -- (mis)match

f(M[i-1, j ], c(S1[i], "_" )), -- delete S1[i]

f(M[i, j-1], c("_", S2[j]))) -- insert S2[j]

Applied to sequence alignment, two varieties of DPA are in use: the Needleman–
Wunsch (“global alignment”) algorithm which builds up an alignment starting
with easily achievable alignments of small subsequences, and the Smith–Waterman
(“local alignment”) algorithm that is similar in concept, except that it does not sys-
tematically move through the sequences from one end to the other, but compares
subsequences anywhere.

It is often tacitly assumed that the sequences are random (i.e., incompressible),
but if they are not (i.e., they are compressible to some degree), this should be taken
into account.

There are also some heuristic algorithms (e.g., BLAST and FASTA) that are faster
than the DPAs. They look for matches of short subsequences, which may be only
a few nucleotides or amino acids long, that they then seek to extend. As with the
DPAs, some kind of scoring system has to be used to quantify matches.

Although sequence alignment has become very popular, some of the assump-
tions are quite weak and there is strong motivation to seek alternative methods for
evaluating the degree of kinship between sequences, not based on symbol-by-symbol
comparison; for example, one could evaluate the mutual information between strings
a and b:

I (sa, sb) = I (sb, sa) = I (sa) − I (sa |sb) = I (sb) − I (sb|sa) . (13.2)

Multiple alignment is an obvious extension of pairwise alignment.

13.5 Intrinsic Methods

The template or intrinsic approach involves constructing concise descriptions of
prototype objects and then identifying genes by searching for matches to such pro-
totypes. An elementary example is searching for motifs (i.e., short subsequences)

15Allison et al. (1999).
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known to interact with particular drugs. The motif is often defined more formally
along the lines of a sequence of amino acids that itself defines a substructure in a
protein that can be connected in some way to protein function or structural stability
and, hence, that appears as conserved regions in a group of evolutionarily related
gene sequences. This is not a strong definition, not least because the motif concept
is based on a mosaic view of the genome that is opposed to the more realistic (but
less tractable) systems view.

The construction of the concise descriptions could be either deductive or inductive.
A difficulty is that extant natural genomes are not elegantly designed from scratch,
but assembled ad hoc, and refined by “life experience” (of the species). The use of
fuzzy criteria may help to overcome this problem.

In practice, intrinsic methods often boil down to either computing one or more
parameters from the sequence and comparing them with the same parameters com-
puted for sequences of known function, or searching for short sequences that expe-
rience has shown are characteristic of certain functions.

13.5.1 Signals

In the context of intrinsic methods for assigning function to DNA, the term “signal”
denotes a short sequence relevant to the interaction of the gene expression machinery
with theDNA. In effect, one is paralleling the action of the cell (e.g., the transcription,
splicing, and translation operations) by trying to recognizewhere the gene expression
machinery interactswithDNA. In a sense, therefore, this topic belongs equallywell to
interactomics (Chap.16).Much use has beenmade of so-called consensus sequences,
which are formed from sequences well conserved over many species by taking the
most common base at each position. The distance (e.g., the Hamming distance) of
an unknown sequence from the consensus sequence is then computed; the closer
they are, the more likely it is that the unknown sequence has the same function as
that represented by the consensus sequence. Useful signals include start and stop
codons (Table3.1). More sophisticated signals include sequences predicted to result
in unusual DNA bendability or known to be involved in positioning DNA around
histones, intron splice sites in eukaryotic pre-mRNA and sequences corresponding
to ribosome binding sites on RNA, and so on.

Special effort has beendevoted to identifyingpromoters,which are of great interest
as potential targets for newdrugs. It is a hard problembecause of the large andvariable
distances between the promoter(s) and the sequence to be transcribed. The approach
relies on relatively well conserved sequences (i.e., effectively consensus sequences)
such as TATA or CCAAT. Other sites for protein–DNA interactions can be examined
in the same way; indeed, the entire transcription factor binding site can be included
in the prototype object, which allows more sophistication (e.g., some constraints
between the sequences of the different parts) to be applied.

http://dx.doi.org/10.1007/978-1-4471-6702-0_16
http://dx.doi.org/10.1007/978-1-4471-6702-0_3
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13.5.2 HiddenMarkovModels

Knowledge of the actual biological sequence of processing operations can be used to
exploit the effect of the constraints on (nucleic acid) sequence that these successive
processes imply. One presumes that the Markov binary symbol transition matrices
are slightly different for introns, exons, promoters, enhancers, the complementary
strand, and so forth. One constructs a more elaborate automaton, an automaton of
automata, in which the outer one controls the transitions between the different types
of DNA (introns, exons, etc.) and the inner set gives, for each type, the 16 different
binary transition probabilities for the symbol sequence. More sophisticated models
use higher-order chains for the symbol transitions; further levels of automata can
also be introduced. The epithet “hidden” is intended to signify that only transitions
from symbol to symbol are observable, not transitions from type to type. The main
problem is the statistical inadequacy of the predictions. A promoter may only have
two dozen bases; a fourth-order Markov chain for nucleotides has of the order of
1010 transition probabilities.

Problem. Construct a hidden Markov model for the mitogen-activated protein
kinase signalling cascade (Sect. 14.7).

13.6 Beyond Sequence

Proteomics data (see Chaps. 14 and 16) are integrated with sequence information in
the attempt to assign function. Proteins whose mRNA levels are correlated with each
other, proteins whose homologues are fused into a single gene in some organisms,
those which have evolved in a correlated fashion, those whose homologues operate
together in a metabolic path or that are known to physically interact can all be con-
sidered to be linked in some way; for example, a protein of unknown function whose
expression profile (see footnote 6 in Chap.14) matches that of a protein of known
function in another organism is assigned the same function. In a literary analogy,
one could rank the frequencies of words in an unknown and known language and
assign the same meanings to the same ranks. Whether the syntax of gene expression
is sufficiently shared by all organisms to allow this to be done reliably is presently
an open question.

Other kinds of data assisting protein function prediction are structure prediction,
intracellular localization, signal peptide cleavage sites of secreted proteins, glycosy-
lation sites, lipidation sites, phosphorylation sites, other sites for post-translational
modification, cofactor binding sites, dehydron density, and so on.

http://dx.doi.org/10.1007/978-1-4471-6702-0_14
http://dx.doi.org/10.1007/978-1-4471-6702-0_14
http://dx.doi.org/10.1007/978-1-4471-6702-0_16
http://dx.doi.org/10.1007/978-1-4471-6702-0_14
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13.7 Minimalist Approaches

The inspiration for this approach is the study of texts written in human languages. A
powerfulmotivation for the development of linguistics as a formal field of inquirywas
the desire to understand texts written in “lost” languages (without living speakers),
especially those of antiquity, records of which began pouring into Europe as a result
of the large-scale expeditions to Egypt, Mesopotamia, and elsewhere undertaken in
the nineteenth and twentieth centuries. More recently, linguistics has been driven by
attempts to automatically translate texts written in one language into another.

One of the most obvious differences between DNA sequences and texts written in
living languages is that the former lacks separators between the words (denoted by
spaces inmost of the latter). Furthermore, unambiguous punctuationmarks generally
enable phrases and sentences in living languages to be clearly identified. Even with
this invaluable information, however,matters are far fromdetermined and the study of
themorphology of words and the rules that determine their association into sentences
(syntax)—that is, grammar—is a large and active research field.

For DNA that is ultimately translated into protein sequences, the nucleic acid base
pairs are grouped into triplets constituting the reading frames, each triplet correspond-
ing to one amino acid. A further peculiarity of DNA comparedwith human languages
is that reading frames may overlap; that is, from the sequence AAGTTCTG. . . one
may derive the triplets AAG, AGT, GTT, TTC, . . .. This is encountered in cer-
tain viruses,16 which generally have very compact genomes. However, the reading
frames of eukaryotes are generally nonoverlapping (i.e., only the triplets AAG, TTC,
. . . would be available).

Due to the absence of unambiguous separators, the available structural information
in DNA is much more basic than in a human language. Even if the “meaning” of
a DNA sequence (a gene) that corresponds to a functional protein might be more
or less clear, especially in the case of prokaryotes, it must be remembered that the
sequence may be shot through with introns; even the stop codons (Table3.1) are not
unambiguous. Only a small fraction (a few percent) of eukaryotic genome sequences
actually correspond to proteins, and any serious attempt to understand the semantics
of the genome must encompass the totality of its sequence.

Nucleotide Frequencies

Due to the lack of separators, it is necessary to work with n-grams rather than words
as such. Basic information about the sequence is encapsulated in the frequency
dictionaries Wn of the n-grams, (i.e., lists of the numbers of occurrences of each
possible n-gram). Each sequence can then be plotted as a point in Mn-dimensional
space, where M is the number of letters in the alphabet (=4 for DNA, or 5 if we
include methylated cytosine as a distinct base).

16E.g., Zaaijer et al. (2007).

http://dx.doi.org/10.1007/978-1-4471-6702-0_3
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Even such very basic information can be used to distinguish between different
genomes; for example, thermophilic organisms are generally richer in C and G,
because the C–G base-pairing is stronger and, hence, stabler at higher temperatures
than A–T. Furthermore, since each genome corresponds to a point in a particular
space, distances between them can be determined, and phylogenetic trees can be
assembled.

The four-dimensional space corresponding to the single base-pair frequencies is
not perhaps very interesting. Already the 16-dimensional space corresponding to the
dinucleotide frequencies is richer and might be expected to be more revealing. In
particular, given the single base-pair frequencies, one can compute the dinucleotide
frequencies expected from random assembly of the genome and determine diver-
gences from randomness. Dinucleotide bias is assessed, for example, by the odds
ratio ρXY = wXY/(wXwY), where wX is the frequency of nucleotide X.17 We will
return to this comparison of actual with expected frequencies below.

Instead of representing the entire genome by a single point, one can divide it up
into roughly gene-long fragments (100–1000 base pairs), determine their frequency
dictionaries, and apply some kind of clustering algorithm to the collection of points
thereby generated. Alternatively, dimensional reduction using principal component
analysis (Sect. 8.3.2) may be adequate. The distributions of a single base-pair and
dinucleotide frequencies look like Gaussian clouds, but the triplet frequencies reveal
a remarkable seven-cluster structure.18 It is natural to interpret the seven clusters as
the six possible reading frames (three in each direction) plus the “noncoding” DNA.

Word Occurrences

Once the single-nucleotide frequencies are known, it is possible to calculate the
expectations of the frequencies of n-grams assembled by random juxtaposition. Con-
straints on the assembly are revealed by deviations of the actual frequencies from
the expected values. This is the principle of the determination of dinucleotide bias. It
is, however, limited with regard to the inferences that may be drawn. For one thing,
as n increases, the statistics become very poor. The genome of E. coli, for example,
is barely large enough to contain a single example of every possible 11-gram even
if each one was deliberately included. Furthermore, the comparison of actual fre-
quencies with expected ones depends on the model used to calculate the expected
frequencies. All higher-order correlations are subsumed into a single number, from
which little can be said about the relative importance of a particular sequence.

It is possible to approach this problemmore objectively (according to a maximum
entropy principle19) by asking what is the most probable continuation of a given n-

17See, e.g., Karlin et al. (1994).
18Gorban et al. (2005).
19The entropy of a frequency dictionary is defined as

Sn = −
∑

j=1

f j log f j . (13.3)

http://dx.doi.org/10.1007/978-1-4471-6702-0_8
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gram (cf. Eq.2.21). Frequency dictionaries may be reconstructed from thinner ones
according to this principle; for example, if one wishes to reconstruct the dictionary
Wn from Wn−1, the reconstructed frequencies are20

f̃i1,...,in = fi1,...,in−1 fi2,...,in

fi2,...,in−1

, (13.4)

where i1, . . . are the successive nucleotides in the n-gram. The reconstructed dictio-
nary is denoted by W̃n(n−1). The most unexpected, and hence informative, n-grams
are then those with the biggest differences between the real and reconstructed fre-
quencies (i.e., with values of the ratio f/ f̃ significantly different from unity).

13.8 Phylogenies

The notion that life-forms evolved from a single common ancestor (i.e., that the
history of life is a tree) is pervasive in biology.21 Before gene and protein sequences
became available, trees were constructed from the externally observable character-
istics of organisms. Each organism is therefore represented by a point in phenotype
space. In the simplest (binary) realization, a characteristic is either absent (0) or
present (1) or is present in either a primitive (0) or an evolved (1) form. The distance
between species, compared in pairs, can be computed as a Hamming distance (i.e.,
the number of different characteristics); for example, consider three species A, B,
and C , to which 10 characteristics labelled a to j are assigned:

a b c d e f g h i j

A 1 1 1 1 1 1 1 0 0 1

B 0 0 0 0 0 1 1 1 0 0

C 0 0 0 0 0 0 0 0 1 0

. (13.5)

This yields the symmetric distance matrix

A B C

A 0.0

B 0.7 0.0

C 0.9 0.4 0.0

. (13.6)

The species are then clustered; the first cluster is formed from the closest pair (viz. B
andC in this example) and the next cluster is formed between this pair and the species

20Gorban et al. (2000).
21The concept of phylogeny was introduced by E. Haeckel; see Sect. 10.8.

http://dx.doi.org/10.1007/978-1-4471-6702-0_2
http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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closest to its two members (and so forth in a larger group) to yield the following tree
or dendrogram:

− − |− − − − |− − − − B

− − − − C

− − − − − − − − A

. (13.7)

This is the classical method; the root of the tree is the common ancestor.
An alternative method, called cladistics,22 counts the number of transformations

necessary to go from a primitive to an evolved form. Hence, in the example, C
differs by just one transformation from the putative primitive form (all zeros). Two
transformations (of characters f and g) create a common ancestor to A and B, but
it must be on a different branch from that of C , which does not have evolved forms
of those two characteristics. This approach yields a different tree:

−|− − |− − − − − − A

− B

− C

. (13.8)

The principle of construction of a molecular phylogeny is to use the sequences of
the “same” genes (i.e., encoding a protein of the same function) in different organisms
as the characteristic of the species; that is, molecular phylogenies are based on
genotype rather than phenotype. In actual practice, protein sequences are typically
used, which are intermediate between genotype and phenotype. In the earliest studies
(1965–1975), cytochrome c was a popular object, since it is found in nearly all
organisms, frombacteria toman.Later, the sequence of the small subunit of ribosomal
RNA (rRNA), another essential and universal object, was used.23 Nowadays, one can,
in principle, analyse whole genomes.

Achronology canbe established on the premiss that themore changes there are, the
longer the time elapsed since the species diverged (assuming that the changes occur
at a constant rate with respect to sidereal time). This premiss can be criticized since,
although the unit of change is the nucleotide, selection (the engine of speciation) acts
on the amino acid; some nucleotide mutations lead to no change in amino acid due
to the degeneracy of the code. There is actually little real evidence that mutations
occur at random (i.e., with respect to both the site and the type of mutation).

A difficulty with molecular phylogenies is the fact that lateral gene transfer (LGT;
cf. Sect. 10.6.4), especially between bacteria and between archaea, may vitiate the
calculated distances. A plausible counterargument in favour of the use of rRNA is
that it should be unaffected by LGT, due to its fundamental place in cell metabolism.

A further difficulty is a computational one: that of finding the optimal tree, since
usually one is interested in comparing dozens (and ultimately millions) of species.

22A clade is a taxonomic group comprising a single common ancestor and all its descendants (i.e.,
a monophyletic group). A clade minus subclade(s) is called a paraphyletic group.
23rRNA has been championed by C. Woese.

http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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The basic principle applied to address this problem is that of parsimony: One seeks to
construct the treewith the least possible number of evolutionary steps. Unfortunately,
this is an NP-complete problem and hence the computation time grows exponentially
with the number of species; even a mere 20 species demands the analysis of almost
1022 possible trees!

13.9 Metagenomics

The ability to culture bacteria in the laboratory, of which Pasteur seems to have
been the pioneer, was a crucial step in the emergence of bacteriology. Pasteur used
liquid media (broths); for the purposes of investigation, however, solid media, intro-
duced by Koch, are more convenient. Since then, the culture of bacteria has become
indispensable to vast areas of medicine, biotechnology and research; for the identi-
fication and counting of bacteria and for the development of serological assays and
vaccines, to name just a few ways of making use of bacterial cultures. At the same
time it is recognized that the vast majority of bacteria cannot be cultured. Therefore,
the only way that this extant, almost immanent microbial richness can be accessed is
by sequencing its genomic signature. The genomes of the entire natural microbiota
collectively constitute the metagenome.24

The vast increase in DNA sequencing capability—both in terms of hardware and
in algorithms for analysing the raw data—has allowed metagenomics (the study of
the metagenome) to become a practical science. Work begins with the extraction of
the DNA of all the microbes in some environmental sample (e.g., soil, or seawater,
or indeed the human gastrointestinal tract, cf. Sect. 15.3). It may then be necessary
to clone the DNA (using cultured, laboratory bacteria!) in order to produce sufficient
material for further analysis.

The most basic analysis is simply to sequence all the DNA. This may result
in millions of genes, which can be compared with known sequences; early work
appeared to reveal an astonishing diversity of whole classes of hitherto unknown
genes. One should, however, be mindful of the influence of sequencing errors in
giving the appearance of more novelty than is actually the case.25

Function-based metagenomics obviates the need to sequence the DNA by letting
the fragments be translated, again in laboratory-cultured bacteria. Novel proteins of
phenotypes are then further analysed.

24Rondon et al. (2000).
25Quince et al. (2009).

http://dx.doi.org/10.1007/978-1-4471-6702-0_15
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The proteome is the ensemble of expressed proteins in a cell, and proteomics is
the study of that ensemble (i.e., the identification and determination of the amounts,
locations and interactions of all the proteins). The tasks of proteomics are summarized
in Fig. 14.1.

We have seen in Chap.10 how the gene is first transcribed into messenger RNA
(mRNA), and a given gene, especially in a eukaryotic cell inwhich the gene resembles
a mosaic of introns (I ) and exons (E), can be assembled to form different mRNAs
(e.g., if the gene is E1 I E2 I E3 I E4 I E5, one could form mRNAs E1E2E3E4E5,
E1E3E4E5, E1E3E5, etc.). The ensemble of these transcripts is called the tran-
scriptome, and its study is called transcriptomics (Sect. 14.1). Due to the variety of
assembly possibilities, the transcriptome is considerably larger (i.e., contains more
types of objects) than the genome.

After the mRNA is translated into a protein, the polypeptide may be modified by
the following:

1. Cutting off a block of amino acids from either end;
2. Covalently adding a large chemical group to an amino acid (e.g., a fatty acid or

an oligosaccharide);
3. Covalently modifiying an amino acid (e.g., by serine or threonine phosphoryla-

tion, or acetylation);
4. Oxidizing or reducing an amino acid (e.g., arginine deimination or glutamine

deamidation).

Modifications 2 and 3maywell be reversible; that is, theremay be a pool of bothmod-
ified and unmodified forms in the cell at any instant.More than 200 post-translational
modifications (PTM) have been identified. They can significantly change the confor-
mation, which in turn implies (for example) that the catalytic activity of an enzyme
may change. Conformation is also a determinant of intermolecular specificity, which
in turn determines protein binding, localization, and so forth. These are all crucial
aspects of the dynamical system that precedes the phenotype in the overall genotype
→ phenotype transformation.

© Springer-Verlag London 2015
J. Ramsden, Bioinformatics, Computational Biology 21,
DOI 10.1007/978-1-4471-6702-0_14
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Fig. 14.1 The major parts
of proteomics and their
interrelationships, and their
relation to pharmaceutical
drugs

These modifications increase the potential repertoire of proteins expressible from
genes by typically one to two orders of magnitude (since many combinations are
possible) compared with the repertoire of genes. Notice that effecting these modifi-
cations requires enzymes; hence, the proteome is highly self-referential.

Although the number of different proteins therefore far exceeds the number of
genes, the actual number of proteins present in a cell at any one instant may well be
much smaller than the number of genes, since only a part of the possible repertoire
is likely to be expressed. Each cell type in an organism has a markedly different
proteome. The proteome for a given cell type is, moreover, likely to depend on its
environment; unlike the genome, therefore, which is relatively static, the proteome
can be highly dynamic.

Proteomics is sometimes defined so as to encompasswhat is otherwise called inter-
actomics: the study of the ensemble of molecular interactions, especially protein–
protein interactions, in a cell, including those that lead to the formation of more or
less long-lived multiprotein complexes. These aspects are covered in Chap.16.

14.1 Transcriptomics

The goal of transcriptomics is to identify, quantify, and analyse the amounts of all the
mRNA in a cell. This is mainly done using microarrays (“gene chips”). The principle
of a microarray is to coat a flat surface with spots of DNA complementary to the
expressedmRNA,which is then captured because of the complementary base-pairing
(hybridization) between DNA and RNA (A–U, C–G, G–C, T–A) and identified. The
relationship of a microarray to a classical affinity assay resembles that of a massively
parallel processor to a classical linear processor, in which instructions are executed
sequentially. The parent classical assay is the Northern blot.1 Microarrays consist of

1Northern blotting allows detection of specific RNA sequences. RNA is fractionated by agarose gel
electrophoresis, followed by transfer (blotting) to a membrane support, followed by hybridization
with known DNA or RNA probes that are radioactively or fluorescently labelled to facilitate their
detection. The technique can be thought of as a variant of Southern blotting, in which specific DNA
sequences from a sample are probed in a similar fashion.

http://dx.doi.org/10.1007/978-1-4471-6702-0_16
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Table 14.1 Typical features
of microarrays

Application Capture element Sample

Genomics ESTs DNA

Transcriptomics cDNA mRNA

Proteomics Antibodies Proteins

Metabolomics Various Various

a two-dimensional array, typically a few square millimetres in overall area, of more
or less contiguous patches, the area of each patch being a few square micrometres (or
less) and each patch on the array having a different chemical composition. Typical
microarrays are assembled from one type of substance (e.g., nucleic acid oligomers).

In use, the array is flooded with the sample whose composition one is trying to
elucidate.2 After some time has elapsed, the array is scanned to determine which
patches have captured something from the sample. It is, of course, essential that each
patch should be addressible, in the sense that the composition of each individual
patch is known or traceable. Hence, a photomicrograph of the array after exposure
to the analyte should allow one to determine which substances have been captured
from the sample.

Table14.1 summarizes some features of microarrays. In more detail, the protocol
for a microarray assay would typically involve the following steps:

Array preparation. The chip should be designed on the basis ofwhat one is looking
for. Each gene of interest should be represented by at least one, or preferably more,
unique subsequences.3 Once the set of sequences has been selected, there are two
main approaches to transfer them to the chip:

1. Heteroöligomers complementary to the mRNA of interest are assembled from
successive monomers usingmicrofabrication technology; for example,4 photoac-
tivatable nucleic acid monomers are prepared. Exposure through a mask, or with
a laser scanner, activates those patches selected to receive, say, G. After exposure
to light, the array is then flooded with G. Then the array is exposed to a differ-
ent pattern and again flooded (with a different base), and so on. This technology
is practicable up to about 20 cycles and is highly appropriate wherever linear
heteroöligomers sharing a common chemistry are required.

2. For all other cases, minute amounts of the receptor substances are directly
deposited on the array (e.g., using laboratory microrobotics combined with inkjet
technology for applying solutions of the different substances). This is suitable for

2If one is trying to determine whether certain genes are present in a bacterial culture (for example),
the array would be coated with patches of complementary nucleic acid sequences. The DNA is
extracted from thebacteria, subjected to some rudimentary purification, separated into single strands,
and usually cut into fragments with restriction enzymes before pouring over the microarray.
3See Chumakov et al. (2005) for a discussion of design principles.
4Fodor et al. (1991).
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large macromolecules, such as proteins, or sets of molecules of substances not
sharing a common chemistry, or longer oligopeptides.

In both cases, each patch can be uniquely identified by its Cartesian array coordinate.

Sample preparation. The rawmaterial is processed tomake available the analyte(s)
of interest and possibly partially purified. The mRNA is typically used to generate
a set of complementary DNA molecules (cDNA), which may be tagged (labelled)
with a fluorescent or other kind of label.

Array exposure. The array is flooded with the sample and allowed to reach equi-
librium. Then all unbound sample is washed away. If the analyte was not tagged,
tagging can be carried out now on the chip (e.g., by flooding with a hybridization-
specific dye5) after removing the unbound molecules, which has the advantage of
eliminating the possibility of the tag interfering with the binding.

Array reading. The array is scanned to determine which patches have captured
molecules from the sample. If the sample molecules have been tagged with a fluo-
rophore, then fluorescent patches indicate binding, with the intensity of fluorescence
giving some indication of the amount of material bound, which, in turn, should be
proportional to the amount of mRNA present in the original sample.

Image processing. The main task is to normalize the fluorescent (or other) inten-
sities. Normalization is important when comparing the transcriptomes from two
samples (e.g., taken from the same tissue subject to two different growth condi-
tions). A straightforward way of achieving this is to assume that the total amount of
expressed mRNA is the same in both cases (which may not be warranted, of course)
and to divide the intensity of each individual spot by the sum of all intensities. If the
transcriptomes have been labelled with different fluorophores and exposed simulta-
neously to the same chip, then normalization corrects for differences in fluorescence
quantum yields and the like.

Analysis. The procedures followed for supervised hypothesis testingwill depend on
the details of the hypothesis (Sect. 8.2). Very commonly, unsupervised exploratory
analysis of the results is carried out which, in effect, uses no prior knowledge but
explores the data on the basis of correlations and similarities. One goal is to find
groups of genes that have correlated expression profiles,6 from which it might be
inferred that they participate in the same biological process. Another goal is to group
tissues according to their gene expression profiles; it might be inferred that tissues
with the same or similar expression profile belong to the same clinical state.

If a set of experiments comprising samples prepared from cells grown under m
different conditions has been carried out, then the set of normalized intensities (i.e.,

5E.g. ethidium bromide, the fluorescence of which becomes about 20-fold stronger after it is inter-
calated into double-stranded DNA.
6An expression profile is defined as a two-column table, with conditions in the left-hand column
and the corresponding (relative) amounts of expressed proteins (possibly as RNA) in the right-hand
column.

http://dx.doi.org/10.1007/978-1-4471-6702-0_8
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transcript abundances) for each experiment defines a point in m-dimensional expres-
sion space, whose coordinates give the (normalized) degrees of expression.Distances
between the points can be calculated by, for example, the Euclidean distance metric,
that is,

d =
[

m∑

i=1

(ai − bi )
2

]1/2

, (14.1)

for two samples a and b subjected to m different conditions. Clustering algorithms
(Sect. 8.3.1) can then be used to group transcripts on the basis of their similarities. The
hierarchical clustering procedure is the same as that used to construct phylogenies
(Sect. 13.8); that is, the closest pair of transcripts forms the first cluster, the transcript
with the closest mean distance to the first cluster forms the second cluster, and so
on. This is the unweighted pair-group method average (UPGMA); variants include
single-linkage clustering, in which the distance between two clusters is calculated
as the minimum distance between any members of the two clusters, and so on.

Fuzzy clustering algorithms may be more successful than the above “hard”
schemes for large and complex datasets. Fuzzy schemes allow points to belong to
more than one cluster. Degree of membership is defined by

ur,s = 1/
m∑

j=1

(
d(xr , θs)

d(xr , θ j )

)1/(q−1)

, r = 1, . . . , N ; s = 1, . . . ,m , (14.2)

for N points and m clusters (m is given at the start of the algorithm), where d(xi , θ j )

is the distance between the point xi and the cluster represented by θ j , and q > 1 is
the fuzzifying parameter. The cost function

N∑

i=1

m∑

j=1

u j
r,sd(xi , θ j ) (14.3)

is minimized (subject to the condition that the ui, j sum to unity) and clustering
converges to cluster centres corresponding to local minima or saddle points of the
cost function. The procedure is typically repeated for increasing numbers of clusters
until some criterion for clustering quality becomes stable; for example, the partition
coefficient

(1/N )

N∑

i=1

m∑

j=1

u2
i, j . (14.4)

The closer the partition coefficient is to unity, the “harder” (i.e., the better separated)
the clustering.

Instead of using a clustering approach, the dimensionality of expression space can
be reduced by principal component analysis (PCA), in which the original dataset is
projected onto a small number of orthogonal axes. The original axes are rotated until
there is maximum variation of the points along one direction. This becomes the first
principal component. The second is the axis along which there is maximal residual
variation, and so on (see also Sect. 8.3.2).

http://dx.doi.org/10.1007/978-1-4471-6702-0_8
http://dx.doi.org/10.1007/978-1-4471-6702-0_13
http://dx.doi.org/10.1007/978-1-4471-6702-0_8
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Limitations and alternatives

Microarrays have some limitations, and one should note the following potential
sources of problems: manufacturing reproducibility; variation in how the exper-
iments are carried out [exposure duration (is equilibrium reached?), temperature
gradients, flow conditions, and so on, all of which may severely affect the actual
amounts hybridized]; ambiguity between preprocessed and postprocessed (spliced)
mRNA; mRNA fragment size distribution not matching that of the probes; quan-
titative interpretation of the data; expense. Attempts are being made to introduce
globally uniform standards—minimum information about a microarray experiment
(MIAME)—in order to make comparison between different experiments possible.
Other techniques have been developed, such as serial analysis of gene expression
(SAGE). In this technique, a short but unique sequence tag is generated from the
mRNA of each gene using PCR (Sect. 13.1.2) and joined together (“concatemer-
ized”). The concatemer is then sequenced. The degree of representation of each tag
in the sequence will be proportional to the degree of gene expression.

The transcription products of many closely related genes such as those originating
from alternative mRNA splicing (Sect. 10.7.5) may be difficult to distinguish using
standard microarray techniques; efforts to overcome that problem include the use of
bundles of tens of thousands of of optical fibres, to the ends of which thousands of
glass beads, each loaded with a particular DNA sequence, are fixed.7 Since the beads
are comparable in size (a few micrometres in diameter) with the optical fibre cores
each fibre will carry at most one bead. Each fibre is individually addressable and the
DNA sequence associated with it is first identified using fluorescent complementary
DNA fragments. The attraction of the technique is the enhanced sensitivity.

Problem. How many n-mers are needed to unambiguously identify g genes?

14.2 Proteomics

The proteome can be accessed directly by measuring the expression levels, not of the
mRNA transcripts but of the proteins into which they are translated. Not surprisingly,
in the relatively few cases for which comparative data for both the transcriptome and
proteome have been obtained, the amounts of the RNAs and corresponding pro-
teins may be very different, even if all the different proteins derived from the same
RNA are grouped together—translation is an important arena for regulating protein

7Yeakley et al. (2002) These researchers combined their fibre optic arraywith the technique of RNA-
mediated annealing, selection and ligation (RASL), in which the mRNAs produced in a particular
cell type are extracted and mixed with DNA oligomers whose sequences are complementary to
those at which two RNA sections could be joined by splicing (“splice junctions”); the presence of
a particular splice junction leads to binding of the DNA oligomers, which can then be multiplied,
fluorescently labelled and exposed to the optical fibre array with which the sequences can be
identified.

http://dx.doi.org/10.1007/978-1-4471-6702-0_13
http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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synthesis.Before this becameapparent, transcriptomics acquired importance because
technically it is much easier to obtain the transcriptome using a microarray than
it is to obtain the proteome using laborious two-dimensional gel electrophoresis
(Sect. 14.2.1), for example. It was hoped that the transcriptome would be a reason-
ably faithful mirror of the proteome. This is, however, definitely not the case in
general; there is no presently discernible unique relationship between the abundance
of mRNA and the abundance of the corresponding protein. Hence, the transcriptome
has lost some of its importance; it is “merely” an intermediate stage and does not
contribute directly to phenotype in the way that the proteome does. Furthermore, the
transcriptome contains no information about the very numerous post-translational
modifications of proteins. On the other hand, to understand the relation between
transcriptome and proteome would be a considerable advance in understanding the
overall mechanism of the living cell. At present, given that both transcriptome and
proteome spaces each have such a high dimensionality, deducing a relation between
trajectories in each is a rather forlorn hope.

The first step in proteomics proper is to separate all of the expressed proteins from
each other such that they can be individually quantified (i.e., characterized by type
and number). Prior to that, however, the ensemble of proteins have to be separated
from the rest of the cellular components. Cells are lysed, proteins are solubilized,
and cellular debris is centrifuged down. Nucleic acids and lipids are removed and
sometimes very abundant proteins (such as albumin from serum).A subset of proteins
may be labelled at this stage, to assist later identification.

A particularly useful form of labelling is to briefly (for 30–40min) feed the living
cells with radioactive amino acids (35S-cysteine and methionine are suitable), fol-
lowed by an abundance of nonradioactive amino acids. The degree of incorporation
of radioactivity into the proteins is then proportional to the net rate of synthesis (i.e.,
biosynthesis rate minus degradation rate).

The two main techniques for separating the proteins in this complex mixture
(which is likely to contain several hundred to several thousand different proteins) are
the following:

1. Two-dimensional gel electrophoresis (2DGE);
2. Enzymatic proteolysis into shorter peptides followed by column chromatography.

Trypsin is usually used as the proteolytic enzyme (protease) since it cuts at well-
defined positions (lysines).

The protein mixture may be pretreated (prefractionated), using chromatography or
electrophoresis, before proceeding to the separation step, in order to selectively enrich
it with certain types of proteins.

Problem. List and discuss the differences between mRNA and protein abundances.
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14.2.1 Two-Dimensional Gel Electrophoresis

In order to understand the principles of protein separation by 2DGE, let us first recall
some of the physicochemical attributes of proteins. Two important ones are:

1. Molecular weight Mr (relative molecular mass);
2. Net electrostatic charge Z [as a function of pH—the pH at which Z = 0 is

important as a characteristic parameter, known as the isoelectric point (i.e.p.), or
pI, or point of zero charge (p.z.c.)].

Both can be calculated from the amino acid sequence (assuming no post-translational
modifications), provided Mr and Z of the individual amino acids are known. Mr is
easy; to calculate Z , one has to make the quite reliable assumption that all of the
ionizable residues are on the protein surface. The calculation is not quite as simple
as adding up all the surface charges, since they mutually affect each other (cf. the
surface of a silicate mineral: not every hydroxyl group is ionized, even at extremely
low pH).8

The technique itself was developed by Klose and, independently, by O’Farrell in
1975. The concept depends on the fact that separation by isoelectric point (i.e.p.) is
insufficient to separate such a large number of proteins, many of whose i.e.p.s are
clustered together. Equally, there are many proteins with similar molecular masses.
By applying the two techniques sequentially, however, they can be separated, espe-
cially if large (30 × 40cm) gels are used.

Proteins in the crude cell extract are dispersed in an aqueous medium containing
the anionic detergent sodium dodecyl sulphate (SDS), which breaks all noncovalent
bonds (i.e., subunits are dissociated, and probably denatured too); the first separation
takes place according to the i.e.p. by electrophoresis on a gel along which a pH
gradient has been established; the partly separated proteins are then transferred to
a second, polyacrylamide, gel within which separation is effected according to size
(i.e., molecular weight if all proteins are assumed to have the same density).

If the cells have been pulse radiolabelled prior to making the extract, then the final
gel can be scanned autoradiographically and the density of each spot is proportional
to the net rate of protein synthesis. Alternatively (or in parallel) the proteins can be
stained and the gel scanned with a densitometer; the spot density is then propor-
tional to protein abundance. There are some caveats: Membrane proteins with more
than two transmembrane sequences are poorly recovered by the technique; if 35S
met/cys is used, one should note that not all proteins contain the same number of
met and cys (but this number is only very weakly correlated with molecular weight);
autoradiography may underestimate the density of weak spots, due to low-intensity

8Linderstrøm-Langworkedout amethodof taking these correlations into account; his formulaworks
practically as well as more sophisticated approaches (including explicit numerical simulation by
Brownian dynamics; cf. Madura et al. 1994) and is much simpler and more convenient to calculate
(see Ramsden et al. 1995 for an application example).
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Fig. 14.2 A two-dimensional
gel after staining

reciprocity failure of the photographic (silver halide) film used to record the pres-
ence of the radionucleides; the commonly used Coomassie blue does not stain all
proteins evenly, although the unevenness appears to be random and hence should not
impose any systematic distortion on the data; rare proteins may not be detected at all;
several abundant proteins clustered close together may not be distinguishable from
each other; and very small and very large proteins, and those with isoelectric points
(pI) at the extremes of the pH range, will not be properly separated. The molecular
weight and isoelectric point ranges are limited by practical considerations. Typical
ranges are 15 000 < Mr < 90 000 and 3 < pI < 8. Hence, the mostly basic (pI
typically in the range 10–14) 50–70 ribosomal proteins will not be captured, as a
notable example (on the other hand, these proteins are not supposed to vary much
from cell to cell, regardless of conditions, since they are essential proteins for all
cells; hence, they are not considered to be especially characteristic of a particular
cell or metabolic state). Figure14.2 shows a typical result.

14.2.2 Column Chromatography

The principle of this method is to functionalize a stationary solid phase (granules of
silica, for example) packed in a column and pass the sample (suspended or dissolved
in the liquid mobile phase) through it (cf. Sect. 16.5.1). The functionalization is such
that the proteins of interest are bound to the granules, and everything else passes
through. A change in the liquid phase composition then releases the bound proteins.
Better separations can be achieved by “multidimensional” liquid chromatography
(MDLC), in which a cation exchange column (for example) is followed by a reverse
phase column. The number of “dimensions” can obviously be further increased.
Usually, the technique is used to prepurify a sample, but, in principle, using differen-
tial elution (i.e., many proteins of interest are bound and then released sequentially
by slowly increasing pH or polarity of the liquid), high-resolution analytical sep-
arations may also be accomplished. Miniaturization (nano-liquid chromatography)
offers promise in this regard. The output from the chromatographymaybe fed directly
into a mass spectrometer (MS).

http://dx.doi.org/10.1007/978-1-4471-6702-0_16
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In multidimensional protein identification technology (MudPIT), the proteins are
first denatured and their cysteines reduced and alkylated, and then digested with
a protease. Following acidification, the sample is then passed through a strong
cation exchange chromatographic column, followed by reverse phase chromatog-
raphy. Eluted peptides are introduced into a mass spectrometer (typically a tandem
(MS/MS) instrument) for identification (see Sect. 14.3).

14.2.3 Other Kinds of Electrophoresis

Free fluid electrophoresis (FFE) is distinguished from chromatography in that there is
no stationary phase (i.e., no transport of analytes through a solidmatrix such as a gel).
The separation medium and the analytes are carried between electrodes, arranged
such that the electric field is orthogonal to the flow of the separation medium.9

14.3 Protein Identification

Two-dimensional gel electrophoresis is very convenient since it creates a physical
map of the cell’s proteins in Mr–i.e.p. space, from which the proteins at given coor-
dinates can actually be cut out and analysed. Hence, it is possible to apply Edman
sequencing,10 at least to themore abundant proteins, or StarkC-terminal degradation.
The most widely applied technique is based onMS, however.11 It is capable of much
higher throughput, and post-translationalmodifications can be readily detected.Mass
spectrometers consist of an ion source, a mass analyser (ion trap, quadrupole, time
of flight (ToF), or ion cyclotron) and a detector

The objects to be analysed have to be introduced into theMS in the gas phase. This
can be achieved by electrospraying or laser desorption ionization. In electrospray-
ing, the proteins are dissolved in salt-free water, typically containing some organic
solvent, and forced to emerge as droplets from the end of an electrostatically charged
silica capillary. As the solvent evaporates, the electrostatic charge density increases
until the droplets explode. The solution dilution should be such that each protein is
then isolated from its congeners. The remaining solvent evaporates and the protein
molecules pass into theMS. At this stage, each protein molecule is typically multiply
charged. Sequential quadrupole filters, typically three, are used to achieve adequate
discrimination. The mass spectrum for an individual protein consists of a series of

9See Patel and Weber (2003) for a review.
10The N-terminal of the protein is derivatized with phenylisothiocyanate to form a phenylthiocar-
bamate peptide, and the first amino acid is cleaved by strong acid resulting in its anilothiazolinone
derivative plus the protein minus its first N-terminal amino acid. The anilothiazolinone derivative is
converted to the stabler phenylthiohydantoin for subsequent high-performance liquid chromatog-
raphy (HPLC) identification.
11See Bell et al. (2009) for efforts to overcome errors in mass spectrometry-based proteomics.
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peaks corresponding to m/z ratios whose charge z differs by one electron. The mid-
dle quadrupole may contain a collision gas (e.g., argon) to fragment the protein into
smaller peptides.

In laser desorption ionization, usually called matrix-assisted laser desorption ion-
ization (MALDI) or surface-enhanced laser desorption/ionization (SELDI), the pro-
tein is mixed with an aromatic organic molecule [e.g., sinapinic acid ((CH3O)2
OHC6H2(CH2)2COOH)] spread out as a thin film, and irradiated by a pulsed ultra-
violet laser. The sinapinic acid absorbs the light and evaporates, taking the proteins
with it. Other matrices can be used with infrared lasers.12 The proteins are typically
singly charged, and a ToF MS detects all the ions according to their mass. MALDI-
ToF MS cannot detect as wide a range of proteins as quadrupole MS, and the matrix
can exert unpredictable effects on the results. Nevertheless, the vision of spots on a
two-dimensional gel being rapidly and sequentially vaporized by a scanning laser and
immediately analysed in the MS offers hope for the development of high-throughput
proteomics analysis tools.

Newer developments in the field include the application of sophisticated ion
cyclotron resonance MSs, the use of Fourier transform techniques, and miniature
instrumentation according to the lab-on-a-chip concept.

Mass spectrometry is also used to characterize the peptide fragments resulting
from proteolysis followed by chromatography. Proteins separated by 2DGE can also
be cleaved using trypsin or another protease to yield fragments, which are then mass-
fingerprinted using MS. The proteolytic peptide fragments are encoded as a set of
numbers corresponding to their masses, and these numbers are compared with a
database assembled from the mass-fingerprints from known peptides.

14.4 Isotope-Coded Affinity Tags

Isotope-coded affinity tags (ICATs)13 are particularly useful for comparing the
expression levels of proteins in samples from two different sources (e.g., cells before
and after treatment with a chemical). It is a way of reducing the variety (number
of proteins that have to be separated) of a complex mixture. Proteins from the two
sources are reacted with light and heavy ICAT reagents in the presence of a reduc-
ing agent. The reagents comprise a biotin moiety, a sulfhydryl-specific iodoacetate
moiety, and a linker that carries eight 1H (light) or 2H (heavy) atoms. They specifi-
cally tag cysteinyl residues on the proteins. The two batches are then mixed and the
proteins cleaved using trypsin. The fragments, only about a fifth of which contain
cysteine, can be readily separated by chromatography on an avidin affinity column
(which binds to the biotin), and finally analysed by MS. Singly charged peptides
of identical sequences from the two sources are easily recognized as pairs differing

12See Chem. Rev. 103 (2003), issue no 2.
13Developed by Aebersold (see Gygi et al. 1999).
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by eight atomic mass units. Differences in their expression levels can be sensitively
compared and normalized to correct for differences in overall protein content.

Many other affinity enrichment techniques can be imagined, tailored according to
the proteins of interest; for example, lectins can be used to make a column selectively
capturing glycoproteins.

14.5 Protein Microarrays

Generic aspects of microarrays have already been covered in Sect. 14.1. Protein
microarrays allow the simultaneous assessment of expression levels for thousands of
genes across various treatment conditions and time. The main difference compared
with nucleic acid arrays is the difficulty and expense of placing thousands of protein
capture agents on the array. Since capture does not depend on simple hybridization,
but on a certain arrangement of amino acids in three-dimensional space, complete
receptor proteins such as antibodies have to be used, and then there is the danger
that their conformation is altered by immobilization on the chip surface.14 It may
be possible to exploit the advantages of nucleic acid immobilization (especially the
convenient photofabrication method) by using aptamers—oligonucleotides binding
specifically to proteins—for protein capture (this might be especially useful for
determining the expression levels of transcription factors).

An ingenious approach is to prepare an array of genes (which is much easier than
preparing an array of proteins) and then expose the microarray to a suitable mixture
of in vitro transcription and translation factors (e.g., from reticulocytes), such that
the proteins are synthesized in situ.15

Polypeptide immobilization chemistries typically make use of covalently linking
peptide side chain amines or carboxyl groups with appropriately modified chip sur-
faces. Quite a variety of possible reactions exist, but usually several different residues
are able to react with the surface, making orientational specificity difficult to achieve.
Proteins recombinantly expressed with a terminal oligohistidine chain can be bound
to surface-immobilized nickel ions, but the binding is relatively unstable.

A significant problem with protein microarrays is the nonspecific adsorption
of proteins. Unfavourably oriented bound proteins, and exposed substratum, offer

14As an alternative way to prepare oligopeptide receptors, the phage display technique invented
by Dyax is very useful. The gene for the coat protein expressed abundantly on the surface of a
bacteriophage virus is modified by adding a short sequence coding for an oligopeptide to one end.
Typically, a large number (∼109) of random oligonucleotides are synthesized and incorporated
(one per phage) into the virus gene. The phages are then allowed to multiply by infecting a host
bacterium; the random peptide is expressed in abundance on the coat of the phage along with the
regular coat protein. The phage population is then exposed to an immobilized target (e.g., a protein).
Any phage (a single one suffices) whose peptide interacts with the target during this screening is
retained and recovered, and then multiplied ad libitum in bacteria.
15See Oh et al. (2007) for an example of this kind of approach.
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targets for nonspecific adsorption. Pretreatment with a so-called “blocking” protein
(seralbumin is a popular choice) is supposed to eliminate the nonspecific adsorption
sites, although some interference with specific binding may also result.

As with the transcriptome, statistical analyses of protein microarray data focus on
either finding similarity of gene expression profiles (e.g., clustering) or calculating
the changes (ratios) between control and treated samples (differential expression).

14.6 Protein Expression Patterns—Temporal and Spatial

Whether the transcriptome or the proteome is measured, the result from each exper-
iment is a list of expressed objects (mRNAs or proteins) and their abundances or
net rates of synthesis. These abundances are usually normalized so that their sum
is unity. Each experiment is therefore represented by a point in protein (or mRNA)
space (whose dimension is the number of proteins; the distance along each axis is
proportional to abundance); each protein is represented by a point in expression space
(whose dimension is the number of experiments). The difficulty in making sense of
these data is their sheer extent: There are hundreds or thousands of proteins and there
may be dozens of experiments (which could, for example, be successive epochs in
a growth experiment, or a series of shocks). Hence, there is a great need for drastic
data reduction.

One approach has already been mentioned [Sect. 14.1; viz. to group proteins into
blocks whose expression tends to vary in the same way (increase, decrease, remain
unchanged)]. This is the foundation for understanding how genes are linked together
into networks, as will be discussed in the next chapter.

Another approach is to search for global parameters characterizing the proteome.
Considering it as “vocabulary” transferring information from genotype to phenotype,
it has been found that the distribution of protein abundances pr follows the same
canonical law as the frequency of words in literary texts:16

pr = P(r + ρ)−1/θ , r = 1, 2, . . . , R (14.5)

where the two parameters are the informational temperature θ, which is low for
limited expression of the potential gene repertoire and high for extensive expression,
and the effective redundancy ρ, which is high when many alternative pathways are
active, and low otherwise. R is the total number of proteins that can be synthesized
in the cell and P is a normalizing coefficient chosen such that the pr sum to unity;
they are ordered according to decreasing magnitude and r is the rank in this list.

Equation (14.5) is well suited to following the evolution of, for example, a syn-
chronized culture of cells: the parameters are determined for each epoch sampled.
The spatially differentiated expression of proteins is much more difficult to follow
experimentally. The most effective technique is probably time of flight secondary

16See Vohradský and Ramsden (2001) and Ramsden and Vohradský (1998).
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ion mass spectrometry (Tof-SIMS): secondary ions are sputtered from the sample
by a primary iron gun firing, typically, gallium or oxygen ions. The secondary ions
are extracted into the flight tube of a mass spectrometer and quantified.17 One use-
ful way to exploit this technology is to feed the organism under investigation with
isotopically labelled food (15N is a popular choice since it is not radioactive and the
slight difference in mass from the naturally far more abundant 14N is likely to have
a negligible physiological effect). Any molecules containing 15N will give a clear
signature in the mass spectrometer. The spatial resolution is determined, inter alia
by the fineness of the collimated primary ion beam.

14.7 The Kinome

One of the most fundamental mechanisms for reversible enzyme activation is phos-
phorylation. This reaction is catalysed by enzymes generically called kinases. Sev-
eral hundred human kinases are known; collectively they comprise the kinome.Most
commonly, serine or threonine residues are phosphorylated, but also tyrosine, histi-
dine and others are known. The so-calledmitogen-activated protein kinases (MAPK),
includingMAPKkinases (MAPKK) andMAPKKkinases, comprise perhaps the best
known family.18 Phosphorylation introduces a bulky, negatively charged (at neutral
pH) group into the amino acid. These changes in both the size and the charge of
the residue typically induce significant conformational changes in the protein; it is
easy to understand in these general terms how phosphorylation of an enzyme (which
might itself be a kinase) can have a profound impact on its activity: typically, phos-
phorylation activates an enzyme that is otherwise catalytically inert. The reverse
reaction, dephosphorylation, is carried out by enzymes called phosphatases.19

The propagation of the signal can be described by a hidden Markov model
(Sect. 13.5.2). Let the substrate of a kinase (e.g., MAPK) be denoted by X and the
phosphorylated substrate by XP. When a kinase is in its resting, inactive form, the
following would be a reasonable guess at the transition probabilities:

→ X XP
X 1.0 0.0
XP 0.9 0.1

(14.6)

since the phosphatases are permanently active. However, if the MAPK is itself phos-
phorylated, the transition probabilities change:

→ X XP
X 0.0 1.0
XP 0.9 0.1

. (14.7)

17Fearn (2015).
18See, e.g., Kolch et al. (2005).
19See Johnson and Hunter (2005) for a review of experimental methods for determining phospho-
rylation.

http://dx.doi.org/10.1007/978-1-4471-6702-0_13
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The phosphorylation of theMAPK itself can be represented as aMarkov chain and, if
X is itself a kinase, the transition probabilities for the phosphorylation of its substrate
will also be different for X and XP. The necessity of the phosphatases (whose effect
is represented by the transition probability pXP→X) is clearly apparent from this
scheme, for without them the supply of substrate would be quickly exhausted.

An insidious form of toxicity is engendered by molecules capable of more or less
indiscriminate phosphorylation of proteins. The extreme importance of phosphory-
lation for, especially, intracellular communication suggests that if such molecules
penetrate into the body they are likely to wreak havoc on intracellular signalling.
As already mentioned, the dephosphorylating phosphatases are permanently active,
but some of the anomalously phosphorylated molecules might not be substrates
for them. Furthermore, the phosphorylation takes time and if the upset is great
enough, the damagemight become irreversible.Organophosphorus compounds caus-
ing organophosphate-induced delayed neuropathy (such as some tricresyl phosphate
isomers, diisopropyl fluorophosphate, a nerve gas, and Mipafox, an insecticide) are
candidates for the disruptive phosphorylation of kinases.20

14.8 Biochemical Signalling

The organization of kinases into signalling cascades, in which a phosphorylated,
hence activated, enzyme itself phosphorylates and activates another kinase, is char-
acteristic. One of the consequences of such cascades is great amplification of the
initial signal (which might have been a single molecule). This is a robust method
for overcoming noise (cf. Sect. 3.6). A cascade also achieves fanout, familiar to the
designer of digital electronic circuits,21 in which an output is made available to mul-
tiple devices. If the response to the external stimulus triggering the cascade requires
the activation of multiple enzymes, for which the genes encoding them might be
located on different chromosomes, the cascade is a way of achieving rapid diffusion
of the signal in a relatively unstructured milieu. Furthermore, as a protein, each ele-
ment of the cascade is only able to interact with a relatively small number of other
molecules bearing information.22 Theremay bemore potentially blockingmolecules
than sites on a single member of the cascade. The blocking effect can be achieved by
interacting with any cascade member, since the entire cascade essentially constitutes
a single linear channel for information flow.

20Lapadula et al. (1992).
21And, indeed, to the neurologist—see Chap. 17.
22This limitation is imposed physicochemically; for example, there is only room for a small number
of other proteins to cluster round and interact with a central one and, of course, the entire surface
of the central protein is unlikely to be sensitive to the presence of other proteins; the possibilities
for interaction are typically limited to a small number of specific binding sites.

http://dx.doi.org/10.1007/978-1-4471-6702-0_3
http://dx.doi.org/10.1007/978-1-4471-6702-0_17
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The fact that information is conveyed bymaterial objects, whose supply is variable
and limited and which occupy an appreciable proportion of the volume of the cell,
creates a situation that is significantly different from that of regulatory networks based
on fixed (e.g., electrical or optical) connexions. As was already stressed in the discus-
sion of the kinase-based signalling pathways (Sect. 14.7), the information-bearing
“quanta” have to be regenerated by phosphatases. There is, moreover, an ultimate
constraint in the form of the finiteness of the attributes of a cell; conceivably, it could
happen that all of the kinases were converted to the active form and no resources
were available for regenerating them, and hence no resources for communicating the
need for regeneration.

Problem. Describe some examples of signalling cascades (e.g., blood clotting,
glycogenolysis).

Problem. Using the formalism of Figs. 3.1 and 9.2 analyse one of the cascades
described in the previous problem, or the MAPK signalling system, from an
information-theoretic viewpoint.
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15TheGlycome,Lipidome
andMicrobiome

In comparison with the immense accumulations of knowledge in genomics and
proteomics, data concerning these other -omes is still relatively sparse. Glycomics
encompasses the polysaccharides of our body; lipidomics the repertoire of lipids;
and microbiomics the resident bacterial community associated with our bodies.

15.1 Glycomics

Glycomics encompasses both the numerous glycans (polysaccharides) that exist
independently and those that are conjugated—polysaccharides linked to proteins and
lipids. By this means the variety of proteins and lipids can be enormously increased.

The study of the glycome is very much more complicated than the genome,
proteome or lipidome, due to its enormous structural diversity, and global, high-
throughput methods are still lacking although carbohydrate microarrays (cf.
Sect. 14.5) are nowbeingdeveloped.1 Someof the different classes requiringdifferent
experimental approaches include glycoproteins, glycolipids, N-glycans, O-glycans,
neutral glycans, and sulfated (negatively charged) glycans. Mass spectrometry is the
technique of choice for analysing glycan structure once they have been isolated.

15.2 Lipidomics

It is now known that the eukaryotic lipidome typically comprises many hundreds of
different molecules, and their global analysis requires high-throughput techniques.
An important development has been “shotgun” mass spectrometry of the lipids
extracted by solvents,2 which not only enables the different lipids to be identified, but

1Feizi et al. (2003).
2Ejsing et al. (2009).
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also quantifies their abundances. The high throughput is achieved by considerable
automation of the process and the data handling is computationally heavy.3

15.3 Microbiomics

It is perhaps well known nowadays that the number of individual microbial cells
in a typical human being exceeds the number of proper cells by about an order
of magnitude. The importance of these guests in processing ingested nutrients can
scarcely be overestimated, not only in our own species but also in, for example,
ruminants, which could not otherwise digest cellulose. Until now, however, efforts
to investigate this microbial richness seem to have been disproportionately small
with respect to its evident importance for the maintenance of a healthy organism.
A corollary of this relative neglect has been the rather cavalier attitude of present-
day medicine towards this indispensable miniature ecosystem; in effect it is simply
neglected. For example, antibiotics are frequently prescribed to eliminate a bacterial
infection of the “main” organism, heedless of the devastation that the antibiotics
are likely to inflict on gastrointestinal microbial diversity, with the likelihood of
consequential ill health. Of similar concern is the well-nigh endemic use of certain
herbicides, the residues of which remaining in food for human consumption may
have deleterious effects on gut microbes.4

The vast increase in DNA sequencing capability has, of course, given a tremen-
dous impetus to the study of our bacterial ecosystem, termed the microbiome (cf.
Sect. 13.9), and it has been possible to initiate the study of how it varies temporally
and spatially.5 In future, such studies will doubtless be extended to fungi and viruses.
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16Interactomics: Interactions
andRegulatoryNetworks

It is clear that the living cell (and a fortiori the multicellular organism) comprises
a great variety of different components that must somehow be integrated into a
functional whole. The framework of this integration is directive correlation (Fig. 9.1)
and it may be considered as a problem of regulation.

Regulation was introduced in Chap.9 (Sect. 9.4) as a means of ensuring that the
system’s output remained within its essential variables while its environment was
undergoing change—in other words, as one of the mechanisms of adaptation (which
is itself a special case of directive correlation). We are perhaps most familiar with
regulation whereby the volition of the regulator is transformed into direct action—
such as pressing the accelerator pedal of a motor car. In a steam locomotive, the lever
with equivalent function is actually called the regulator. Stationary steam engines
providing mechanical power to a factory or mine are typically required to run at a
constant speed and are equipped with a “governor” (a device mounted on the spindle
turned by the engine that increases its radius with increasing angular velocity of the
spindle, due to centrifugal force and, via a system of cranks and levers, directly closes
a valve shutting off steam to the driving cylinders) that automatically regulates the
speed (this is another example of the “regulation by error” described in Sect. 9.4).

In these examples—and in numerous others in which the communication chan-
nels along which information flows are conducting wires carrying electrons—the
elements constituting the regulated system are physically connected by levers, wires,
or pipes. In the living cell, a signal (Sect. 14.8) is typically a transformed molecule,
such as an activated enzyme (cf. Sect. 14.7), that simply diffuses away from where it
is generated (cf. Sect. 6.3). Rather like certain male fish mating by merely dispersing
their sperm in the water around them, to be picked up by any females of that species
that happen to be in the vicinity, the transformed, information-bearing molecules
will only catalyse the reaction for which they are activated if they encounter their
specific substrate, to which they must first bind.1 Hence, physicochemical affinities

1Eukaryotic cells in particular are in a great deal more structured than the simple picture sug-
gests: Filaments of various kinds (e.g., microtubules) appear to function inter alia as tracks along
which certain molecules are transported to specific destinations. However, even in this case, the
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(interactions) between molecules play an essential rôle in regulation. From the base-
pairing of nucleic acids, to the formation of the bilayer lipid membranes enclos-
ing organelles and cells, through to the protein–protein interactions building up
supramolecular complexes serving structural ends, or for carrying out reactions,
the regulation of gene expression by transcription factors binding to promotors, the
operation of the immune system—the list seems to be almost endless—one observes
the molecules of life linked together in a web of interactions. The set of all these
interactions (i.e., a list of all the molecules, associated with all the other molecules
with which some kind of specific association is found) constitutes the interactome
(the repertoire of interactions).2

If the proteins are considered as the nodes of a graph (cf. Sect. 7.2), a pair of pro-
teins will be joined by a vertex if the proteins associate with each other. On this basis,
the “interactome”—the set of interactions in which a protein could participate—
would be characterized by such a graph, or an equivalent list of all the proteins in a
cell, each associated with a sublist of the proteins with which they interact. This is
in contrast to metabolic networks, in which two metabolites are joined if there is a
chemical reaction (catalysed by an enzyme) leading from one to another (Sect. 18.4).
Attention is often focused on small portions of these networks, which are then called
pathways. The so-called signalling networks (Sect. 14.8) are of a similar nature,
focusing on reactions such as protein phosphorylation to activate an enzyme (cf.
Sect. 14.7), and they differ from metabolic networks only inasmuch as the enzyme
substrates and reaction products are not metabolites, and the destination of many of
the signalling pathways is typically a gene promoter site.

All proteins are, of course, gene products.3 Hence, the fundamental regulatory
network is that of the genes, which constitute the nodes, the edges signifying the
activation or inhibition of other genes, and the central problem is to infer (“reverse
engineer”) both the state structure of the network (cf. Fig. 7.1) and the physical net-
work of interactions. For the former, the input data are now typically the temporal
evolution of gene expression profiles, obtained by a succession of microarray exper-
iments (cf. Sect. 14.6). For the latter, association is measured more or less directly
using a variety of physicochemical techniques. In this chapter, we will first deal with
the problem of deducing the state structure from gene expression data and, in the
second half, we will examine the physical interactions between molecules.

The graph of interactions is potentially extraordinarily large and complex. Even
if one confines oneself to the N expressed proteins in a cell, there are ∼N 2 potential

(Footnote 1 continued)
information-bearing (“signalling”) molecule has first to encounter, and bind to, the carrier molecule
that will convey it along the track.
2McConkey has coined the term “quinary structure” (of proteins) for this web of interactions.
3This statement, the obvious corollary of the central dogma, is actually quite problematical—in
the sense of having a rather ambiguous meaning—when scrutinized in detail. Many functionally
relevant proteins are significantly modified (e.g., glycosylated) by enzymes after translation. Of
course, these enzymes themselves are gene products.
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binary interactions and vastly more higher-order ones.4 Even if only a small fraction
of these interactions actually occur (and some general results for the stability of
systems (Sect. 7.1) suggest that only about 10%will occur), we are still talking about
∼107 interactions, assuming about 104 expressed proteins (in a eukaryotic cell), and
108 pairs would have to be screened in order to find the 10%. In a prokaryote, with
possibly only 1000 expressed proteins, the situation is more tractable but still poses
a daunting experimental challenge, even without considering that many of those
proteins are present in extremely low concentrations.

When one or more stimuli arrive at a cell, the affinities of certain proteins for
a transcription factor binding site (TFBS) are altered, and mRNA transcription is
activated or inhibited, resulting in altered abundance of the mRNA and the trans-
lated protein, measured using microarrays (Sect. 14.1). To a first approximation, it
is useful to represent expression as “1” and the absence of expression as “0”. Alter-
natively, since many proteins are nearly always expressed to some extent, increased
transcription–translation (“upregulation”) can be represented as “1”, and decreased
transcription–translation (“downregulation”) as “0”. The systemcan then be analysed
as a Boolean network.

In prokaryotes, and possibly some eukaryotes, genes are organized in operons.
As already discussed in Chap.10, an operon comprises a promoter sequence con-
trolling the expression of several genes (positioned successively dowstream from
the promoter), whose products may be successive enzymes in a metabolic pathway.5

In most of the eukaryotes investigated hitherto, a similar but less clearly delineated
arrangement also exists: The same transcription factor may control the expression of
several genes, which may, however, be quite distant from each other along the DNA,
indeed even on different chromosomes.

Genes observed to be close to each other in expression space are likely to be
controlled by the same activator. Each gene can have its own promoter sequence;
coexpression is then achieved by the transcription factor binding to a multiplicity of
sites. Indeed, given that several factors may have to bind simultaneously to the TFBS
region in order to modulate expression, control appears to be most commonly of the
“many to many” variety, as anticipated many years ago byWright. Since genes code
for proteins, which, in turn, control the expression of other genes, the network is
potentially extremely interconnected and heterarchical.

Example. The lac operon (part of the DNA of E. coli) consists of consecutive
repressor gene, promoter, operator, and lactose-metabolizing gene sequences. In
the absence of lactose, the repressor protein binds to the operator sequence and pre-
vents the RNA polymerase from transcribing the genes (of which there are three,
translated into permease, a protein that helps to transports lactose into the cell, and
β-galactosidase, and galactoside transacetylase). Allolactose, a by-product of lac-
tose metabolism, is able to bind to the repressor, changing its conformation and

4Many transcription factors, for example, are multiprotein complexes.
5Groups of operons controlled by a single transcription factor are called regulons; groups of regulons
are called modulons.
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preventing it from binding to the operator sequence, whereupon the RNA poly-
merase is no longer prevented from binding to the promoter sequence and hence
initiates transcription of the lactose-metabolizing genes. Note that a certain basal
level of production of the lactose-metabolizing proteins is necessary.

Problem. Construct a Boolean model of the lac operon. Hint: Start with a very
simple model and progressively add features. Can the effects of noise and delays in
signal transmission be incorporated?

Each gene will have its experimentally determined expression profile, and once
these data are available, the genes can be clustered (Sect. 8.3.1) or arranged into a
hierarchy (Sect. 13.8). The principal task, however, is to deduce the state structure
from such data.

It is a very useful simplification to consider themodel networks to beBoolean (i.e.,
genes are switched either on or off). To give a flavour of the approach, consider an
imaginary mini-network in which gene A activates the expression of B, B activates A
and C, and C inhibits A.6 This is just an abbreviated way of saying that the translated
transcript of A binds to the promoter sequence of B and activates transcription of
B, and so on. Hence, A, B, and C form a network, which can be represented by a
diagram of immediate effects (cf. Fig. 9.2) or as a Boolean weight matrix:

A B C
A 0 1 −1
B 1 0 0
C 0 1 0

. (16.1)

Reading from top to bottom gives the cybernetic formalization; reading horizon-
tally gives the Boolean rules: A=B NOT C, B=A, C=B. Matrix (16.1) can be
transformed to produce a stochastic matrix (a probabilistic Boolean network) and
the evolution of transcription given by a Markov chain. Different external circum-
stances engendering different metabolic pathways can be represented by hidden
Markov models (Sect. 13.5.2). Noise can be added in the form of a random fluctu-
ation term. Alternatively, the system can be modelled as a neural net in which the
evolution of the expression level ai (i.e., the number of copies produced) of the i th
protein in time τ is

τ
dai

dt
= Fi

(∑

j

wi j a j − xi

)
− ai , (16.2)

wherew is an element of the weight matrix (16.1),F is a nonlinear transfer function
(e.g., an exponential function), x is an external input (e.g., a delay), and the negative
term at the extreme right represents degradation. The Boolean network approach
lends itself to elegant, compact descriptions that can easily be extended to hundreds
of genes.

6After Vohradský (2001).
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16.1 Inference of Regulatory Networks

Given the experimental microarray data consisting of g gene transcripts measured at
t successive epochs, one seeks to find how expression is controlled by a relatively
small number c � g of control nodes, represented as an g×c matrix R. This implies
decomposition of the experimental g × t matrix E :

E = RF (16.3)

where F is a c×t matrix giving the temporal evolution of the control nodes. However,
this decomposition is not, in general, unique. Inference of the network is still largely
a heuristic procedure, in which alternative topologies fitting the data equally well
are considered, and, finally, a selection is made on the basis of additional, ad hoc,
information. The field of systems biology7 is largely devoted to this problem.

Many new developments are under way. Petri nets may be able to incorporate
more biological features while still retaining a compact description. Representing
network components as tensors allows many standard manipulations to be carried
out, some of which may turn out to be useful in revealing useful features of the data.
For more complete quantification, explicit differential equations for regulation are
more successful,8 in which the temporal variation of expression of a gene product z
under the effect of m regulators is written as

dz

dt
= k1

1 + exp
(
−∑m

j=1 w j y j (t) + b
) − k2z , (16.4)

where k1 is the maximum rate of expression, the y represent the expression levels
of the regulators (usefully approximated as polynomials) and w are their rates, b
represents delay, and k2 is the rate coefficient for degradation of z. This system of
equations can be fitted to experimental microarray data.

16.2 The Physical Chemistry of Interactions

Although knowledge of the state structure of a network (system) does not require
knowledge of the physical structure, there can be no information transfer, and hence
no regulatory control, in the absence of physical interaction. “Interaction”, as implied
by elementary chemical reactions of the type

A + B
ka�
kd

C , (16.5)

where C is a complex of A and B and for which an affinity (or equilibrium) constant
K is defined according to the mass action law (MAL) by

K = ab

c
, (16.6)

7Kitano (2002).
8Vu and Vohradský (2007).
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where the lowercase letters denote mole fractions,9 is nearly always quite inade-
quate to characterize the association between two proteins. In practical terms, if an
experiment is carried out with scant regard to the underlying physical chemistry,
even slight differences in the way of carrying out the reaction or in the way the data
are interpreted could result in considerable differences in the corresponding numer-
ical values attributed to the interaction. At present, the interactome has mostly been
assembled on the basis of dichotomous inquiry (i.e., does the protein interact or does
it not?), but as technical capabilities improve, this is obviously going to change, and
it will become important to assign gradations of affinity to the interactions.

The cytoplasm is crowded and compartmentalized. Hence, many pairs of pro-
teins potentially able to interact have a negligible chance of encountering each other
in practice. Moreover, local concentrations of inorganic ions and small molecules,
which may greatly influence the strength of an interaction, often differ greatly from
place to place within the cell. This gives an advantage to methods probing interac-
tions in vivo over those requiring the proteins to be extracted. On the other hand,
in vivo measurements cannot usually yield data sophisticated enough to go beyond
the elementary model of interaction encapsulated by Eq. (16.5) and mostly cannot
go beyond a simple yes/no appraisal of interaction. Additionally, unless the in vivo
technique involves some three-dimensional spatial resolution, the result will be an
average over different local microenvironments, physiological states, and so forth.
On the other hand, properly designed in vitro experiments can reconstitute conditions
of a tightly defined, spatially restricted physiological state of a living cell.

It should be emphasized that many protein interactions take place at the internal
surfaces of cells, such as the various lipid bilayermembranes. The physical chemistry
of the interactome is thus largely the physical chemistry of heterogeneous reactions,
not homogeneous ones. It also follows that the interactions of the proteins with
these internal surfaces must also be investigated: Clearly, a situation in which two
potentially interacting partners become associatedwith amembrane, and then diffuse
laterally until they encounter each other, is different from one in which only one
protein is associated with the membrane, and the interacting partner remains in
the bulk.

The field can naturally be extended to include the interactions of proteins with
other nonprotein objects, such as DNA, RNA, oligosaccharides and polysaccharides,
as well as lipid membranes. Indeed, it is essential to do so in order to obtain a proper
representation of the working of a cell. Although the interactome emerged from
a consideration of proteins, protein–DNA and protein–saccharide interactions are
exceedingly important in the cell (the latter have been given comparatively less
attention).10

One proposed simplification has been to consider that protein–protein binding
takes place via a relatively small number of characteristic polypeptide domains (i.e.,

9In the literature, K is often loosely defined using Eq. (16.6) with concentrations rather than mole
fractions, whereupon it loses its dimensionless quality.
10Remarkable specificity is achievable (see, e.g., Popescu and Misevic 1997).
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a sequence of contiguous amino acids, sometimes referred to as a “module”). In the
language of immunology, a bindingmodule is an epitope (cf. Sect. 10.5). Themodule
concept implies that the interactome could effectively be considerably reduced in
size. There is, however, no consistent way of defining the modules. It seems clear
that a sequence of contiguous amino acids is inadequate to do so; an approach built
upon the dehydron concept11 would appear to be required.

It is useful to consider two types of protein complexes: “permanent” and “tran-
sient”. By permanent, large multiprotein complexes such as the spliceosome (and,
in principle, any multisubunit protein) that remain intact during the lifetime of their
constituents are meant. On the other hand, transient complexes form and disintegrate
constantly as and when required. The interactome is thus a highly dynamic structure
and this kinetic aspect needs to be included in any complete characterization.

The kinetic mass action law (KMAL) defines the same K as given in Eq. (16.6)
according to

K = ka
kd

, (16.7)

where the ks are the rate coefficients for association (a) and dissociation (d), but as
it is a ratio, the same value of K results from association reactions that take either
milliseconds or years to reach equilibrium. This temporal aspect can have profound
influences on the outcome of a complex interaction.Many biological transformations
(of the type often referred to as signal transduction) require the sustained presence of
A in the vicinity of B in order to effect a change (e.g., of conformation) in B that will
then trigger some further event (e.g., inC, also bound toB).A verywell-characterized
example of this kind of effect is the photolysis of silver halides.12 Freshly reduced
Agwill relax back to Ag+ if it fails to capture another electron within a characteristic
time (this is the origin of the low-intensity reciprocity failure of photographic film).
Similarly, too weak or too brief an exposure of molecule B to molecule A will result
in the failure of A to trigger any change in B, hence in C, and so on. Therefore, K
alone is inadequate to characterize an interaction.

There are many proteins interacting in a fashion intermediate between the two
extremes of transient and permanent (e.g., transcription factors that must gain a
subunit in order to be able to actively bind to a promoter site).

Finally, in these preliminary remarks we recall the evolutionary constraints
imposed on change: A mutation enhancing the efficiency of an enzyme may be
unacceptable because of adverse changes to its quinary structure.

In the remainder of this chapter we consider the basic types of intermolecular
interactions, experimental techniques for determining interactions in vivo and in
vitro, and some notions about the network structure of the interactome, including its
dynamical aspects.

11The dehydron (Sect. 11.5.2) is an underwrapped (i.e., underdesolvated) hydrogen bond and is a
key determinant of protein affinity.
12See, e.g., Ramsden (1984, 1986).
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16.3 Intermolecular Interactions

The simplest, and least specific, interaction is hard-body exclusion. Atoms cannot
interpenetrate due to the Born repulsion. The situation is slightly more complicated
for macromolecules of irregular shape (i.e., with protrusions and reëntrant hollows);
they may be modelled as spheres with effective radii, in which case some interpen-
etration may be possible, in effect.

The Lifshitz–van der Waals force is nearly always weakly attractive, but since it
operates fairly indiscriminately, not only between macromolecules but also between
them and small solvent molecules, it is of little importance in conferring specificity
of interaction.

Most macromolecules are ionized at cytoplasmic pH, due to dissociation (from
–COOH) or addition (to –NH2) of a proton, but the charge is usually effectively
screened in the cytoplasmic environment, such that the characteristic distance (the
Debye length) of the electrostatic interaction between charged bodiesmay be reduced
to a fraction of a nanometre. Hence, it is mainly important for short-range steering
prior to docking.

Hydrogen-bonds (H-bonds or HB) have already been encountered (Sects. 11.2,
11.3 and 11.5, etc.). A chemical group can be either an HB-donor or an HB-acceptor.
Potentiated by water, this interaction can have a considerable range in typical biolog-
ical milieux—out to tens of nanometres. It is the dominant interparticle interaction
in biological systems.13

“Hydrophobic effects” or “forces” are also a manifestation of hydrogen-bonding
in the presence of water, which can effectively compete for intermolecular H-bonds.
The wrapping of dehydrons by appropriate apolar residues is a key contributor to
protein–protein affinity.

It may be useful to think of the interactions between macromolecules in a cell
as analogous to those between people at a party. It is clear that everyone is subject
to hard-body exclusion. Likewise, one may feel a weak (nonspecific) attraction for
everyone—misanthropes would presumably not have bothered to come. This is suffi-
cient to allow one to fleetingly spend time exchanging a fewwords with a goodmany
people, among whom there will be a few with strong mutual interest and a longer
conversation will ensue. Once such mutual attraction is apparent, the conversation
may deepen further, and so on. This is very like the temporal awareness shown by
interacting macromolecules capable of existing in multiple states.

13Hydrogen-bonding is a special example of Lewis acid–base (AB) or electron donor–acceptor (da)
interactions.

http://dx.doi.org/10.1007/978-1-4471-6702-0_11
http://dx.doi.org/10.1007/978-1-4471-6702-0_11
http://dx.doi.org/10.1007/978-1-4471-6702-0_11
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Time-Dependent Rate “Constants”

Even a two-state molecule can display temporal awareness. Consider the reaction
between a receptor R that can exist in either of two states and a ligand L:

R1 + L
ka�
kd1

R1L , (16.8)

R1L
ks�

kd2
R2L ; (16.9)

the interpretation of this would be that after initial binding, the receptor changes its
conformation into that of state 2, in which the ligand ismuchmore tightly bound. The
probability of R and L remaining together can be described by a memory function,
in which the amount ν(t) of associated protein is represented by the integral

ν(t) = ka

∫ t

0
φ(t1)Q(t, t1) dt1 , (16.10)

whereφ is the fraction of unoccupied binding sites. Thememory kernel Q denotes the
fraction of A bound at epoch t1 that remains adsorbed at epoch t . Often, Q simply
depends on the difference t − t1. If dissociation is a simple first-order (Poisson)
process, as is the case if the associated partners each only have a single state, then
Q(t) = exp(−kdt) and there is no memory, but in general the dissociation rate
coefficient is time-dependent and can be obtained from the quotient

kd(t) =
∫ t
0 φ(t1)Q′(t, t1) dt1∫ t
0 φ(t1)Q(t, t1) dt1

, (16.11)

where Q′ is the derivative of the memory function with respect to time. A necessary
condition for the system to reach equilibrium is

lim
t→∞Q(t) = 0 . (16.12)

Problem. Derive the memory function for the system described by the reactions
(16.8). Hint: Use Laplace transforms.

Specificity

From the above considerations it follows that specificity of interaction is mainly
influenced by geometry (due to hard-body exclusion), the pattern of complementary
arrangements of HB-donors and HB-acceptors (for which an excellent example is
the base-pairing in DNA and RNA (Figs. 11.3 and 11.5) and the pattern of com-
plementary arrangements of dehydrons and apolar residues on the two associating
partners.14

Thus, specificity of interaction (synonymous with “molecular recognition”) is a
kind of pattern recognition (cf. Sect. 8.2), germane to sequence matching. Clearly,

14See Ramsden (2000).

http://dx.doi.org/10.1007/978-1-4471-6702-0_11
http://dx.doi.org/10.1007/978-1-4471-6702-0_11
http://dx.doi.org/10.1007/978-1-4471-6702-0_8


252 16 Interactomics: Interactions and Regulatory Networks

the more features that are included in the matching problem, the more discriminating
the interaction will be.

Nonspecific Interactions

Most biological interactions show no discontinuity of affinity with some parameter
characterizing the identity of one of the binding partners, or their joint identity,
although the relation may be nonlinear. Hence in most cases the difference between
specific and nonspecific interactions is quantitative, not qualitative. Even nucleotides
can pair with the wrong bases, albeit with much smaller affinity.15 In many cases,
such as the association of transcription factors with promoter sites, weak nonspecific
binding to any DNA sequence allows early association of the protein with the nucleic
acid, whereupon the search for the promoter sequence becomes a randomwalk in one
dimension rather than three, which enormously accelerates the finding process.16 It
should be emphasized that nonspecific binding is an essential precursor to specific
binding. The scheme (16.8) applies, in which case the difference in states 1 and 2
might merely be one of orientation.

Cooperative Binding

Consider again reaction (16.5) withA representing a ligand binding to an unoccupied
site on a receptor (B). Suppose that the ligand-receptor complex C has changed prop-
erties that allow it to undergo further, previously inaccessible reactions (e.g., binding
to a DNA promoter sequence). The rôle of A is to switch B from one of its stable
conformational states to another. The approximate equality of the intramolecular,
molecule–solvent, and A–B binding energies is an essential feature of such biologi-
cal switching reactions. An equilibrium binding constant K0 is defined according to
the law of mass action (16.6). If there are n independent binding sites per receptor,
conservation of mass dictates that b = nb0 − c, where b0 is the total concentration
of B, and the binding ratio r = c/b0 (number of bound ligands per biopolymer)
becomes

r = nK0a

1 + K0a
. (16.13)

Suppose now that the sites are not independent but that the addition of a second (and
subsequent) ligand next to a previously bound one (characterized by an equilibrium
constant K1) is easier than the addition of the first ligand. In the case of a linear
receptor B, the problem is formally equivalent to the one-dimensional Ising model
of ferromagnetism, and neglecting end effects, one has

r = n

2

(
1 − 1 − K0a

[(1 − K0a)2 + 4K0a/q]1/2
)

, (16.14)

15See, e.g., Kornyshev and Leikin (2001).
16E.g. Ramsden and Dreier (1996) see Ramsden and Grätzel (1986) for a nonbiological example
of the effect of dimensional reduction from 3 to 2.
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where the degree of cooperativity q is determined by the ratio of the equilibrium
constants, q = K1/K0. For q > 1 this yields a sigmoidal binding isotherm. If q < 1,
then binding is anticooperative, as, for example, when an electrically charged particle
adsorbs at an initially neutral surface; the accumulated charge repels subsequent
arrivals and makes their incorporation more difficult.

Sustained Activation

Effective stimulation in the immune system often depends on a sustained surface
reaction. When a ligand (antigen) present at the surface of an antigen-presenting cell
(APC) is bound by a T-lymphocyte (TL) (see Sect. 10.5), binding triggers a confor-
mational change in the receptor protein to which the antigen is fixed, which initiates
further processes within the APC, resulting in the synthesis of more receptors, and
so on. This sustained activation can be accomplished with a few, or even only one
TL, provided that the affinity is not too high: The TL binds, triggers one receptor,
then dissociates and binds anew to a nearby untriggered receptor (successive binding
attempts in solution are highly correlated). This “serial triggering” can formally be
described by

L + R → R∗
L (16.15)

(with rate coefficient ka), where the starred R denotes an activated receptor and

R∗
L � R∗ + L (16.16)

with rate coefficient kd for dissociation of the ligandL from the activated receptor, and
the same rate coefficient ka for reassociation of the ligand with an already activated
receptor. The rate of activation (triggering) is −dr/dt = −karl, solvable by noting
that dl/dt = −ka(r + r∗) + kdr∗

L. One obtains

l(t) = kaτ

1 − Y e−t/τ
+ ka(l0 − r0) − kd − 1/τ

2ka
, (16.17)

where τ = {4l0kakd+[ka(l0−r0)−kd]2}−1/2 and Y = (kd+ka[l0+r0]−1/τ )/(kd+
ka[l0 + r0] + 1/τ ), subscripts 0 denoting the initial concentrations of R and L, and
the temporal evolution of the activated form is then found from

r(t) = r0 exp

[
ln

(
1 − Y e−t/τ

1 − Y

)
− t

τ

]
. (16.18)

16.4 In Vivo Experimental Methods

Several methods have been developed involving manipulations on living cells.
Although sometimes called in vivo, they cannot be called noninvasive. The cell
is assaulted quite violently: Either it is given unnatural, but not lethal reagents, or
it is killed and swiftly analysed before decay sets it, the interactions present at the
moment of death being assumed to remain until they have been measured.

http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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16.4.1 TheYeast Two-Hybrid Assay

Suppose that it is desired to investigate whether protein A interacts with protein B.
The general concept behind this type of assay is to link A to another protein C,
and B to a fourth protein D. C and D are chosen such that if they are complexed
together (via the association of A and B), they can activate some other process (e.g.,
gene expression) in yeast. In that case, C could be the DNA-binding domain of a
transcription factor, andD could trigger the activation of RNApolymerase. The name
“hybrid” refers to the need to make hybrid proteins (i.e., the fusion proteins A-C and
B-D). If A indeed associates with B, when A-C binds to the promoter site of the
reporter gene, B-D will be recruited and transcription of the reporter gene will begin.
The advantage of the technique is that the interaction takes place in vivo.

Many variants of the basic approach can be conceived and some have been real-
ized; for example, A could be anchored to the cell membrane, and D (to which B is
fused) could activate some other physiological process if B becomes bound to the
membrane.

Disadvantages of the technique include the following: the cumbersome prepara-
tions needed (i.e., making the fusion proteins by genetic engineering); the possible,
or even likely, modification of the affinities of A and B for each other, and of C and D
for their native binding partners, through the unnatural fusion protein constructs; and
the fact that the interactions take place in the nucleus, which may not be the native
environment for the A–B interaction. It is also restrictive that interactions are tested
in pairs only, although this does not seem to be a problem in principle; transcription
factors requiring three or more proteins to activate transcription could be used.

16.4.2 Crosslinking

The principle of this approach is to instantaneously crosslink all associated partners
(protein–protein and protein–DNA) using formaldehyde while the cell is still alive.
It is then lysed to release the crosslinked products, which can be identified by mass
spectrometry. In the case of a protein–nucleic acid complex, the protein can be
degraded with a protease, and the DNA fragments to which the protein was bound—
which should correspond to transcription factor binding sites—can be identified by
hybridizing to a DNA microarray.

The specific instantiation for proteins (especially transcription factors) bound to
DNA is called chromatin immunoprecipitation (ChIP). In order to identify the DNA,
after crosslinking and cell lysis the DNA is fragmented by sonication and selected
complexes are precipitated using an appropriate antibody for the protein of interest,
following which the DNA can be sequenced. In order to determine where the protein
binds on the chromosome, the fragmented DNA can be exposed to an appropriate
microarray (ChIP-on-chip technology).
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16.4.3 Correlated Expression

The assumption behind this family ofmethods is that if the responses of two (ormore)
proteins to some disturbance are correlated, then the proteins are associated. As an
example, mRNA expression is measured before and after some change in conditions;
proteins showing similar changes in transcriptional response (increase or decrease,
etc.—the expression profile) are inferred to be associated. Another approach is to
simultaneously delete (knock out) two (or more) genes that individually are not
lethal. If the multiple knockout is lethal, then it is inferred that the encoded proteins
are associated.

Although these approaches, especially the first, are convenient for screening large
numbers of proteins, the assumption that co-expression or functional association
implies actual interaction is very unlikely to be generally warranted, and, indeed,
strong experimental evidence for it is lacking.

16.4.4 Other Methods

Many other ways to identify protein complexes are possible; for example, A could
be labelled with a fluorophore, and B labelled with a different fluorophore absorbing
and emitting at lower wavelengths. If the cell is illuminated such that A’s fluorophore
is excited but the emission of B’s fluorophore is observed, then it can be inferred
that A and B are in sufficiently close proximity that the excitation energy is being
transferred from one to the other by Förster resonance. This approach has a number
of undesirable features, such as the need to label the proteins and the possibility of
unfavourable alignment of the fluorophores, such that energy transfer is hindered
even though A and B are indeed associated.

RNA–protein binding can be investigated by the systematic evolution of ligands by
the exponential enrichment (SELEX) technique, in which candidate RNA oligomers
(possibly initially random) are passed through an affinity column of the protein of
interest. Retained RNA is eluted, amplified using PCR, and reapplied to the column.
The cycle is repeated until most of the RNA binds, whereupon it is sequenced.

16.5 In Vitro Experimental Methods

Here affinities are measured outside the cell. At least one of the proteins of interest
has to be isolated and purified. It can then be immobilized on a chromatographic
column and the entire cell contents passed through the column. Any other proteins
interacting with the target protein will be bound to the column and can be identified
after elution.

A much more powerful approach, because it allows precise characterization of
the kinetics of both association and dissociation, is to immobilize the purified target
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Fig. 16.1 Schematic representation of a biosensor. The thickness and structure of the capture
layer, which concentrates the analyte, whose presence can then be registered by the transducer,
largely determines the temporal response. Themain transducer types aremechanical (cantilevers, the
quartz crystal microbalance), electrical (electrodes, field-effect transistors), optoelectronic (surface
plasmon resonance), and optical (planar waveguides, optical fibres). See Ramsden (1994) and
Scheller and Schubert (1989) for comprehensive overviews

protein on a transducer able to respond to the presence of proteins binding to the tar-
get. The combination of capture layer and transducer is called a biosensor (Fig. 16.1).

Although this approach is formally in vitro, the physiological milieu can be repro-
duced to practically any level of detail. Indeed, as pointed out in the introduction to
this chapter, the microenvironment of a subcellular compartment can be more pre-
cisely investigated than in vivo. Nevertheless, since each interaction is individually
measured, with as much detail as is required, high throughput is only possible with
massive parallelization, but because of the current expense of transducing devices,
this parallelization is only practicable with protein microarrays, the penalty of which
is that almost all kinetic information is lost. Hence, at present, protein microarrays
and serial direct affinity measurement using biosensing devices are complementary
to each other. Miniaturization of the transducers and large-scale integration of arrays
of devices (comparable to the development of integrated circuit technology from
individual transistors, or the development of displays in which each pixel is driven
by a tiny circuit behind it) will allow the essential detailed kinetic characterization to
be carried out in amassively parallelmode. Significant improvements inmicroarrays,
allowing reliable kinetic information to be obtained from them, are also envisaged.
In effect, the two approaches will converge.

16.5.1 Chromatography

Chromatography denotes an arrangement whereby one binding partner is immobi-
lized to a solid support (the stationary phase) and the other partner is dissolved or
dispersed is a liquid flowing past the solid (the mobile phase). In essence, it is like
the biosensor; the difference is that binding is not measured in situ, but by depletion
of the concentration of the mobile in the output stream. As with the biosensor, a
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drawback is that the immobilized protein has to be chemically modified in order to
be bound to the immobile phase of the separation system. In contrast to the biosen-
sor, the hydrodynamics within the column are complicated and chromatography is
not very useful for investigating the kinetics of binding. On the other, hand there is
usually an immense area of surface within the column, and the technique is therefore
useful for preparative purposes.

Typically, the protein complexes are identified usingmass spectrometry (examples
of methods are tandem affinity purification, TAP, or high-throughput mass spectro-
metric protein complex identification, HMS-PCI; see Sect. 14.3).

16.5.2 Direct Affinity Measurement

As indicated in the legend to Fig. 16.1, a variety of transducers exist, the most popu-
lar being the quartz crystal microbalance (QCM), surface plasmon resonance (SPR),
and optical waveguide lightmode spectroscopy (OWLS).17 A new and even more
sensitive technique is grating-coupled interferometry (GCI).18 A great advantage
of biosensors is that no labelling of the interacting proteins is required, since the
transducers are highly sensitive. The order of intrinsic sensitivity is QCM < SPR
< OWLS < GCI. The most sensitive method until recently (i.e., OWLS) can easily
detect 1 protein per 50 µm2 using grating couplers. Provided adequate tempera-
ture stabilization can be achieved, interferometry (i.e., optical waveguide lightmode
interferometry—OWLI—for which there are various schemes, including allowing
orthogonal (transverse magnetic and transverse electric) modes to propagate within
the same waveguide, and dual polarization interferometry, in which the modes prop-
agate in separate waveguides and are allowed to interfere in the far field) and the
hybrid GCI can potentially achieve several orders of magnitude more sensitivity by
using extended path lengths, although this may complicate the kinetic analysis of
any processes being monitored.

Both QCM and SPR present a metal surface to the recreated cytoplasm, to which
it can be problematical to immobilize one of the binding partners.19 OWLS, OWLI
and GCI have no such restriction since the transducer surface can be any high refrac-
tive index transparent material (titania is a popular choice). Moreover, the risk of

17See Ramsden (1994) for a comprehensive survey of all these and others.
18Kozma et al. (2009).
19A popular way to avoid the bioincompatibility of the gold or silver surface of the transducer
requiredwith SPRhas been to coat it with a thick (∼200 nm) layer of a biocompatible polysaccharide
such as dextran, which forms a hydrogel, to which the target protein is bound. Unfortunately, this
drastically changes the transport properties of the solution in the vicinity of the target (bound) protein
(see Schuck 1996), which can lead to errors of up to several orders of magnitude in apparent binding
constants (via a differential effect on ka and kd). Furthermore, such materials interact very strongly
(via hydrogen bonds) with water, altering its hydrophilicity, with concomitant drastic changes to
protein affinity, leading to further, possibly equally large, distortions in binding constant via its link
to the free energy of interaction (�G = −RT ln K ).

http://dx.doi.org/10.1007/978-1-4471-6702-0_14
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denaturing the protein by the immobilization procedure can be avoided by coating
the transducer (the optical waveguide) with a natural bilayer lipid membrane and
choosing a membrane-associated protein as the target.

Formeasuring the interaction, one simply causes a solution of the putative binding
protein (A) to flow over its presumed partner (B) immobilized at the transducer
surface; the binding of A to B can be recorded with very high time resolution.

The real power of this approach lies in the comprehensive characterization (i.e.,
precise determination of the number of associated proteinswith good time resolution)
of the association that it can deliver. A major defect of the description built around
equation (16.5) is that the dissociation of A from B is only very rarely correctly
given by an equation of the type dν/dt ∼ e−kdt , where ν is the number of associated
proteins (i.e., a pure Poisson processwithoutmemory), sincemost proteins remember
how long they have been associated. This is a consequence of the fact that they have
several stable states, and transitions between the states can be induced by a change
in external conditions, such as binding to another protein. The correct approach is
to consider that during a small interval of time �t1 at epoch t1, a number �ν of
molecules of A will be bound to B; hence,

�ν = ka(ν, t1) cA(ν, t1) φ(ν, t1) �t1 , (16.19)

where cA is the concentration of free (unassociated) A and φ is the probability that
there is room to bind (we recall that the cell is a very crowded milieu). The memory
function Q(t, t1) gives the probability that a molecule bound at epoch t1 is still bound
at a later epoch t ; hence (cf. Eq.16.10),

ν(t) =
∫ t

0
ka(t1)cA(t1)φ(t1)Q(t, t1) dt1 . (16.20)

The memory function, as well as all the other parameters in Eq. (16.20), can be
determined from the high-resolution association and dissociation kinetics.

Further advantages of the biosensor approach include the ability to study collective
and cooperative effects and to determine the precise stoichiometry of the association.

16.5.3 Protein Chips

In order to enablemany interactions to bemeasured simultaneously,microarrays have
been developed.20 With these arrays, the interaction of protein A with thousands of
other proteins can be studied in a single experiment, by letting A flow over the array.
Some kind ofmarking of A (e.g., post-reaction staining) is typically required to allow
the identification of its presence at certain sites on the array. The physical chemistry
of operation of these devices is governed by the same basic set of equations as for
the biosensor approach (Sect. 16.5), although it is not presently possible to achieve
the same sensitivity and time resolution.21

20Section14.5; the immobilization of proteins without altering their conformation, and hence asso-
ciation characteristics, is however more difficult than for nucleic acid oligomers.
21See also Sect. 14.1 for limitations of the technique.

http://dx.doi.org/10.1007/978-1-4471-6702-0_14
http://dx.doi.org/10.1007/978-1-4471-6702-0_14
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16.6 Interactions from Sequence

The principle of this approach is that gene proximity is the result of selective evolu-
tionary pressure to associate genes that are co-regulated and, hence, possibly interact-
ing. Themotivation is to develop amethod that is far less tedious and labour-intensive
(and hence expensive) than the experimental techniques discussed in the preceding
two sections, yet no less accurate.

Certain proteins (in a single given species) apparently consist of fused domains
corresponding to individual proteins (called component proteins) in other species.
The premiss of the method is that if a composite (fused or fusion) protein in one
species is uniquely similiar to two-component proteins in another species, whichmay
not necessarily be encoded by adjacent genes, those component proteins are likely
to interact. “Interaction” may be either physical association or indirect functional
association such as involvement in the same biochemical pathway, or co-regulation.
Hence, what is inferred from this method does not exactly correspond with what is
measured in the experimental methods. Nevertheless, it is an interesting attempt and
one that could be developed, with more sophistication, to extract interaction data
from sequence alone, which is a kind of Holy Graal for interactomics, since it is so
much easier nowadays to obtain sequence data than any other kind.

16.7 Global Statistics of Interactions

The experimental difficulties are still so onerous, the uncertainties so great, and the
amount of data so little that researchers have mostly been content to draw diagrams,
essentially graphs, of their results, with the proteins as nodes and the associations
as vertices, and leave it at that; at most, a difference in the pattern between a pair
of sets of results from the same organism grown under two different conditions
might be attempted. An endeavour to go beyond this first stage of representation
has been made,22 with the result (from a single dataset covering protein–protein
interactions in yeast, with just under 1900 proteins and just over 2200 interactions)
that the probability that a given protein interacts with k other proteins follows a
power law over about one and a half orders of magnitude with an exponent ∼− 2.
Unsurprisingly, the most heavily connected proteins were also found to be the most
likely to cause lethality if knocked out.

22Jeong et al. (2001).
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17TheNervous System

The brain is a living exemplar of an information processor par excellence. It seems,
therefore, obvious that bioinformatics encompasses the study of the brain, although
it is often considered quite separately. Because of the immense literature about the
brain, this chapter will only offer a few brief insights.

The fundamental need for a brain arises because of the need of a living organism
to coordinate its actions;1 directive correlation implies that purpose-like behaviour
requires a minimum number of causal connexions and this number is very large if
activities are to be coordinated. Perfect coordination (of an activity) can be defined
as implying that the activity takes account of all other activities. Even a very simple
animal movement with focal condition FC (cf. Fig. 9.1) might require four muscles
to be coordinated; denoting the state of excitation or inhibition of these muscles by
the variables e1, e2, e3 and e4, and considering that the reaction time r of eachmuscle
in taking account of any of the others is uniform and constant, the causal connexions
for any particular epoch are shown in Fig. 17.1.

A similarly perfectly coordinated system of n muscles would require ∼ n2 + n
causal connexions; in practice an even greater number would be required because
our variables e require both afferent and efferent connexions and further connexions
would be required for the sake of adaptation to particular environmental circum-
stances.

Given this swift increase in complexity with size, there are evident advantages in
making the connexions permanent, narrowly canalized and lacking mutual interfer-
ence: a nerve system is able to satisfy these requirements. There is a further great
advantage in centralizing the system as in Fig. 17.2, in which the circle represents
the boundary of the nerve centre. The sixteenfold connectivity is now confined to the
centre and only the fourfold afferent and fourfold efferent connectivities are required
without. This is a way to achieve the greatest possible economy with respect to the
length of the required communication channels.

1Sommerhoff (1950), Sect. 31.
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Fig. 17.1 A uniform directive correlation (Chap. 9) with focal condition FC involving four mus-
cles whose state (of excitation or inhibition) is denoted e (see text for further explanation) (after
Sommerhoff 1950; reproduced by permission of Oxford University Press [Fig. 8, p. 121])

Fig.17.2 The same scheme as in Fig. 17.1 except that the nerve connexions have been centralized
(within the circle), showing the great economy in the overall length of the communication channels
(see text for further explanation) (after Sommerhoff 1950; reproduced by permission of Oxford
University Press [Fig. 9, p. 131])

17.1 The Neuron and Neural Networks

The neuron (nerve cell) is the fundamental elementary unit of the brain. It consists
of a central body (the soma) with a single long and slender process growing out
from it—the axon, which may, however, have many branches (collaterals). Axons
impinge on receptive processes (dendrites) of other neurons or on the soma itself, the
points of impingement being called synapses, which may be excitatory or inhibitory.
Considering that the human brain contains about 1011 neurons and that each neuron
may have tens of thousands of synapses, the enormous complexity of the nervous
system is evident.

“Both the afferent [bringing information from distant receptors] and efferent
[sending impulses to distant organs such as muscle] flow of information in the
nervous system is coded in terms of the identity of the activated nerve fibres and

http://dx.doi.org/10.1007/978-1-4471-6702-0_9
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the frequency of the impulses transmitted in them”.2 Frustratingly, the precise
information that is conveyed between neurons remains unknown. Adrian established
the “all or nothing” nature of the nervous impulse, and also showed that the afferent
effect depends on the temporal pattern of impulses in the incoming neuron. Follow-
ing receipt of inputs, via synapses, from other neurons, possible responses include
firing a single pulse, firing a rapid sequence of pulses, switching between pulses
and nothing (“silence”).3 The choice of response depends on the internal state of
the neuron, which may also be influenced by chemicals (hormones) in its immediate
environment.

Drawing on analogies with spin glasses, the structure of which is arranged to
minimize energy, Hopfield (1982) proposed that the firing of neurons in networks
also minimizes the energy of the network, through a process somewhat resembling
epigenetic development (Fig. 10.5).

17.2 Outstanding Problems

It should be emphasized that there is no evidence that biological neural systems
manifest the well-known principles of digital logic circuits. The same applies to
biological memory. It may be that neural computing is not even algorithmic. In
computer terms, its operations appear to be partly analogue (depending critically on
the degree of excitation in the nerve fibres) and partly digital (depending critically
on the identity of which fibres are activated).

One is continuously confronted with the fact that our knowledge of the brain is
essentially privative. Some of the most pressing questions are as basic as how infor-
mation is coded in neural activity, how memories are stored and retrieved, and what
the baseline activity of the brain represents. Regarding this last question, it appears
that certain (marine) animals are able to analyse noise in their sensory inputs suffi-
ciently well to inform their hunt for prey, possibly involving stochastic resonance.

The brain is the supreme example of an object being observed—and doubtless
being influenced during observation—by itself.

17.3 Artificial Neural Networks

Artificial neural nets (ANN) are inspired by the study of real networks of neurons
but they have diverged from the latter and should not be considered a model of the
former. They are used for computation: for example, given a set of essential features,
one wishes to compute the identity of the object possessing those features.

2Sommerhoff (1974), p. 135.
3For details of the physicochemical mechanism of transmission of signals along the nerve fibres,
see, for example, Markin et al. (1987).

http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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An ANN typically consists of a number of individual cells (“neurons”) arranged
in layers and connected as follows (there are no intralayer connexions): in the first
layer there are as many cells as there are input parameters for the calculation that one
wishes to carry out. In the second and third layers there should be a large number
of cells. Each input cell should be connected to every cell in the second layer, and
every cell in the second layer should be connected to every cell in the third layer.
Finally, all cells in the third layer should be connected to all the cells constituting the
output layer (in some cases a single cell), which gives the result. This architecture
somewhat resembles that shown in Fig. 17.2.

The connexions are channels along which information flows. The “synaptic
strengths” (or conductivities) of the individual connexions increase with the amount
of traffic along them. This is directly inspired by Hebb’s rule for natural neural
networks.

Each cell carries out a simple computation on the inputs it receives; for example
it could sum the received inputs, weighted by the synaptic strengths, and output 1 if
the sum exceeds some threshold, otherwise 0.

The network is trained (supervised learning) with inputs corresponding to known
outputs, which fixes the synaptic strengths. It can then be used to solve practical
problems. For example, one may have a set of attributes of coffee beans of unknown
origin and wish to identify their provenance.

Problem. Program a general purpose computer to act as a neural network for iden-
tifying objects from their essential attributes.
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Metabolism is the ensemble of chemical transformations carried out in living tissue
(Sect. 10.3); operationally it is embodied in the matter and energy fluxes through
organisms. Metabolomics is defined as the measurement of the amounts (concentra-
tions) and locations of the all themetabolites in a cell, themetabolites being the small
molecules (Mr � 1000; e.g., glucose, cAMP,1 GMP,2 glutamate, etc.) transformed
in the process of metabolism (i.e., mostly the substrates and products of enzymes).3

The quantification of the amounts of expressed enzymes is, as we have seen, pro-
teomics; metabolomics is essentially an extension of proteomics to the activities of
the expressed enzymes, and it is of major interest to examine correlations between
expression data and metabolite data.4

Metabonomics is a subset of metabolomics and is defined as the quantitative
measurement of the multiparametric metabolic responses of living systems to patho-
physiological stimuli or genetic modification, with particular emphasis on the eluci-
dation of differences in population groups due to genetic modification, disease, and
environmental (including nutritional) stress. In the numerous cases of diseases not
obviously linked to genetic alteration (mutation), metabolites are the most revealing
markers of disease or chronic exposure to toxins from the environment and of the
effect of drugs. As far as drugs are concerned,metabonomics is effectively a subset of
the investigation of the absorption, distribution, metabolism, and excretion (ADME)
of drugs.

1Cyclic adenosine monophosphate.
2Guanosine monophosphate.
3The official classification of enzyme function is that of the Enzyme Commission (EC), which
recognizes six main classes: 1, oxidoreductases; 2, transferases; 3, hydrolases; 4, lyases; 5, iso-
merases; and 6, ligases. The main class number is followed by three further numbers (separated
by points), whose significance depends on the main class. For class 1, the second number denotes
the substrate and the third number denotes the acceptor; whereas for class 3, the second number
denotes the type of bond cleaved and the third number denotes the molecule in which that bond
is embedded. For all classes, the fourth number signifies some specific feature such as a particular
cofactor.
4These correlations are crucial for understanding the links between genome and epigenetics.
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Metabonomics usually includes not only intracellular molecules but also the
components of extracellular biofluids. Of course, many such molecules have been
analysed in clinical practice for centuries; the novelty of metabonomics lies above
all in the vast increase of the scale of analysis; high-throughput techniques allow
large numbers (hundreds) of metabolites to be analysed simultaneously and repeat
measurements can be carried out in rapid succession, enabling the temporal evo-
lution of physiological states to be monitored. The concentrations of a fairly small
number of metabolites has been shown in many cases to be so well correlated with
a pathological state of the organism that these metabolite concentrations could well
serve as the essential variables of the organism, whose physiology is, as we may
recall, primarily directed toward maintaining the essential variables within viable
limits (cf. Sect. 9.4).

Metabonomics is being integratedwith genomics and proteomics in order to create
a new systems biology, fully cognizant of the intense interrelationships of genome,
proteome, and metabolome; for example, ingestion of a toxin may trigger expression
of a certain gene, which is enzymatically involved in a metabolic pathway, thereby
changing it, and those changes may, in turn, influence other proteins, and hence (if
some of those proteins are transcription factors or cofactors) gene expression.

18.1 Data Collection

The basic principle is the same as in genomics and proteomics: separation of the
components followed by their identification. Unlike genomics and transcriptomics,
metabonomics has to deal with a diverse set of metabolites, which are in some
sense even more varied than proteins (which are at least all polypeptides). Typical
approaches are to use chromatography to separate the components one is interested
in and mass spectrometry to identify them. Alternatively, high-resolution nuclear
magnetic resonance spectroscopy can be applied directly to many biofluids and even
organ or tissue samples

Metabolicmicroarrays operate on the same principle as other kinds ofmicroarrays
(Sect. 14.1) in which large numbers of small molecules are synthesized, typically
using combinatorial or other chemistry for generating high diversity. The array is then
exposed to the target, whose components of interest are usually labelled (although
their chemical diversity makes this more difficult than in the case of nucleic acids, for
example; moreover, the small size of metabolites makes it more likely that the label
chemically perturbs them). This technique can be used to answer questions such as
“to which metabolite(s) does macromolecule X bind?”

Much ingenuity is currently being applied to determine spatial variations in
selected metabolites. An example of a method developed for that purpose is PEB-
BLES (probes encapsulated by biologically localized embedding): fluorescent dyes,
entrapped inside larger cage molecules, which respond (i.e., change their fluo-
rescence) to certain ions or molecules. Their spatial location in the cell can be
mapped using fluorescence microscopy. Another example is the development of
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high-resolution scanning secondary ion mass spectrometry (“nanoSIMS”), whereby
a focused ion beam (usually Cs+ or O−) is scanned across a (somewhat conducting)
sample and the secondary ions released from the sample are detected mass spec-
trometrically with a spatial resolution of some tens of nanometres. This method is
very favourable for certain metal ions, which can be detected at mole fractions of
as little as 10−6. If biomolecules are to be detected, it is advantageous to mark the
molecule or molecules of interest by enriching them with rare but stable isotopes
of their constituent atoms (e.g., 15N, whose natural abundance is typically less than
1%); the marked molecules can then easily be distinguished via the masses of their
fragments in themass spectrometer. It is usually safe to assume that the physiological
effect of such marking is small.5

As far as whole bodies are concerned, the blood is an extremely valuable organ
to analyse, since its composition sensitively depends on the state of the organism, to
the extent that the blood is sometimes called “the sentinel of the body”.

18.2 Data Analysis

The first task in metabonomics is typically to correlate the presence of metabolites
with gene expression. One is therefore trying to correlate two datasets, each con-
taining hundreds of points, with each other. This in essence is a problem of pattern
recognition (Sect. 8.2). There are two categories of algorithms used for this task:
unsupervised and supervised.

The unsupervised techniques determine whether there is any intrinsic clustering
within the dataset. Initial information is given as object descriptions, but the classes
to which the objects belong is not known beforehand. A widely used unsupervised
technique is principal component analysis (PCA, see Sect. 8.3.2). Essentially, the
original dataset is projected onto a space of lower dimension; for example, a set of
metabonomic data consisting of a snapshot of the concentrations of 100 metabolites
is a point in a space of 100 dimensions. One rotates the original axes to find a new
axis along which there is the highest variation in the data. This axis becomes the first
principal component. The second one is orthogonal to the first and has the highest
residual variation (i.e., that remaining after the variation along the first axis has
been taken out), the third axis is again orthogonal and has the next highest residual
variation, and so on. Very often, the first two or three axes are sufficient to account
for an overwhelming proportion of the variation in the original data. Since they are
orthogonal, the principle components are uncorrelated (have zero covariance).

In supervised methods, the initial information is given as learning descriptions
(i.e., sequences of parameter values (features) characterizing the objectwhose class is
known beforehand).6 The classes are nonoverlapping. During the first stage, decision

5See Voigt and Matt (2004) for some insight into this question.
6See, e.g., Tkemaladze (2002).
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functions are elaborated, enabling new objects from a dataset to be recognized, and
during the second stage, those objects are recognized. Neural networks (Sect. 17.3)
are often used as supervised methods.

18.3 Metabolic Regulation

Once all of the data have been gathered and analysed, one attempts to interpret the
regularities (patterns). Simple regulation describes the direct chemical relationship
between regulatory effector molecules, together with their immediate effects, such
as feedback inhibition of enzyme activity or the repression of enzyme biosynthesis.
Complex regulation deals with specific metabolic symbols and their domains. These
“symbols” are intracellular effector molecules that accumulate whenever the cell is
exposed to a particular environment (cf. Table18.1). Their domains are themetabolic
processes controlled by them; for example, hormones encode a certain metabolic
state; they are synthesized and secreted, circulate in the blood and, finally, are decoded
into primary intracellular symbols (Sect. 18.3.2).

18.3.1 Metabolic Control Analysis

Metabolic control analysis (MCA) is the application of systems theory (Sect. 7.1)
or synergetics (Sect. 7.3) to metabolism. Let X = {x1, x2, . . . , xm}, where xi

is the concentration of the i th metabolite in the cell; that is, the set X consti-
tutes the metabolome. These concentrations vary in both time and space. Let
v = {v1, v2, . . . , vr }, where v j is the rate of the j th process. To a first approxi-
mation, each process corresponds to an enzyme. Then

dX
dt

= Nv , (18.1)

where the “stoichiometry matrix” N specifies how each process depends on the
metabolites.Metabolic control theory (MCT) is concernedwith solutions toEq. (18.1)
and their properties. The dynamical system is generally too complicated for explicit
solutions to be attempted, and numerical solutions are of little use unless one knows
more of the parameters (enzyme rate coefficients) and can measure more of the vari-
ables than are generally available at present. Hence, much current discussion about
metabolism centres on qualitative features. Some are especially noteworthy: It is
well known, from numerous documented examples, that large changes in enzyme
concentration may cause negligible changes in flux through pathways of which they
are a part. Metabolic networks are truly many-component systems, as discussed in
Chap.7, and, hence, the concept of feedback, so valuable in dealing with systems of
just two components, is of little value in understanding metabolic networks.

http://dx.doi.org/10.1007/978-1-4471-6702-0_17
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Table 18.1 Some examples of metabolic coding

Condition Symbol Domain

Glucose deficiency cAMP Starvation response

N-deficiency ppGpp Stringent response

Redox level NADH DNA transcription

Problem. Write X and v in Eq. (18.1) as column matrices and N as an m × r matrix.
Construct, solve, and discuss an explicit example with only two or three metabolites
and processes.

18.3.2 TheMetabolic Code

It is apparent that certain molecules mediating intracellular function (e.g., cAMP)
are ubiquitous in the cell (see Table18.1). Tomkins (1975) has pointed out that these
molecules are essentially symbols encoding environmental conditions. The domain
of these symbols is defined as the metabolic responses controlled by them. Note that
the symbols are metabolically labile and are not chemically related to molecules
promoting their accumulation. The concept applies to both within and without cells.
Cells affected by a symbol may secrete a hormone, which circulates (e.g., via the
blood) to another cell, where the hormone-signal is decoded—often back into the
same symbol.

18.4 Metabolic Networks

Metabolism can be represented as a network in which the nodes are the enzymes and
the edges connecting them are the substrates and products of the enzymes. There are
two main lines of investigation in this area, which have hitherto been pursued fairly
independently from one another.

The first line is centred on metabolic pathways, defined as series of consecu-
tive enzyme-catalysed reactions producing specific products; “intermediates” in the
series are defined as substances with a sole reaction producing them and a sole reac-
tion consuming them. The complexity of the ensemble of metabolic pathways in a
cell is typified by Gerhard Michal’s famous chart found on the walls of biochemistry
laboratories throughout the world. Current work focuses on ways of rendering this
ensemble tractable; for example, a set of transformations can be decomposed into
elementary flux modes. An elementary flux mode is a minimal set of enzymes able to
operate at steady state for a selected group of transformations (“minimal” implies that
inhibition of any one enzyme in the set would block the flux). A related approach is
to construct linearly independent basis vectors in flux space, combinations of which
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express observed flux distributions. The extent to which the requirement of a steady
state is realistic for living cells remains an open question. In analogy to electrical
circuits, use has also been made of Kirchhoff’s laws to analyse metabolic networks,
especially his first law stating that the sum of all (metabolite) currents at a node
is zero.

The second line is to disregard the dynamic aspects and focus on the distribution
of the density of connexions between the nodes. The number of nodes of degree
k appears to follow a power law distribution (i.e., the probability that a node has
k edges ∼k−γ).7 Moreover, there is evidence that metabolic networks thus defined
have small world properties (cf. Sect. 7.2).

Just as in the abstract networks (automata) discussed previously (Chap.7), a major
challenge in metabolomics is to understand the relationship between the physical
structure (the nodes and their connecting edges) and the state structure. As the ele-
mentary demonstrations showed (cf. the discussion around Fig. 7.1), physical and
state structures are only tenuously related. Much work is still needed to integrate the
two approaches to metabolic networks and to further integrate metabolic networks
into expression networks. Life is represented by essentially one network, in which
the nodes are characterized by both their amounts and their activities, and the edges
likewise.
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The ultimate goal, to which the study of genome and proteome lead (cf. Fig. 12.1),
is to understand phenotype and phenomics is the science of the phenotype.1 Mainly,
it should be understood as the science of how to measure phenotype. In the case of
static attributes (e.g., eye colour) or uniformly increasing ones (e.g., bacterial cell size
under certain conditions) this is straightforward. In other cases, such as behaviour
(Sect. 19.4), it is not.

19.1 Polygenic Disease

Many common diseases (e.g., asthma, diabetes and epilepsy) appear to have a genetic
basis but lack the simple patterns of inheritance that would allow one to infer that
they are the result of disorder in a single gene. Such polygenic diseases are likely
much more common than single-gene diseases.

Furthermore, their incidence is known to be increasing and, although this is often
attributed to environmental factors, it has been argued that it is a result of population
mixing,2 itself a corollary of globalization; the mixing tends to reintroduce suscep-
tibility genes exogenously, which endogenously had been selected against (it can
be assumed that the populations being mixed, having previously existed in differ-
ent environments, have different sets of susceptibilities and resistances). Note the
contrast with the benefits of mixing for diminishing the incidence of single-gene
recessive diseases.3

1Bilder et al. (2009).
2Awdeh and Alper (2005) and Awdeh et al. (2006).
3The antithesis of polygenicity, pleiotropy (one gene affecting many traits) has been shown in at
least one case to stabilize cooperation (Foster et al. 2004)—cf. Sect. 10.9.1.
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19.2 Activity-Based Protein Profiling

Although quite a few diseases can be linked to disorders in a single gene, in other
cases genetic profile is a very poor predictor of susceptibility to succumbing to
disease. The transcriptome also has limitations, because it does not include post-
translational modifications of proteins, such as glycosylation, which can enormously
change properties. To gain insight into what abnormality might be the cause of a
disease, such as ametabolic disorder, it is best to directlymeasure the activities of key
enzymes. In effect this is proteomics, but proteomics is typically only concernedwith
the identities and abundances of the protein repertoire. The activity-based approach
preferably uses small probes interactingwith enzyme active sites to give an indication
of activity.4

One area that has been quite exhaustively investigated from this perspective is
the organophosphate detoxification activity of paraoxonase (PON1), which depends
on the catalytic efficiency of hydrolysis of the enzyme substrate. Although there
are particular polymorphisms in the gene that change the catalytic activity of the
enzyme, it has long been recognized that the determination of PON1 status requires
more than genotyping:5 both the catalytic activity of individual molecules and their
abundance in serum are important.6 Within a given population, serum PON1 activity
can vary by one to two orders of magnitude; it is modulated by numerous transgenic
factors, including environmental chemicals, drugs, diet and age.

19.3 PhenotypeMicroarrays

Microbes, with their relatively limited phenotypic repertoire, and even individ-
ual cells from multicellular organisms, are amenable to high throughput array-
based assays analogous to gene microarrays (Sect. 14.1). Systems in current use
are based on arrays of microwells, each well containing the cells and other necessary
components.

One approach is based on cell respiration as a universalmonitor of cellular activity;
it is monitored colorimetrically via the reaction of NADH with a reporter dye.7

Another approach is based on OWLS (Sect. 16.5.2) in an array format.8 The latter is
potentially much more powerful because a much more detailed view of phenotype
can be obtained, including the kinetics of shape changes and of the redistribution of
material within the cell.9

4Barglow and Cravatt (2007).
5Richter and Furlong (1999).
6Furlong (2008).
7Bochner et al. (2001).
8E.g., Orgovan et al. (2014).
9Ramsden and Horvath (2009).
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19.4 Ethomics

The phenotype of multicellular organisms needs more sophisticated approaches than
what can be achieved using a microarray (Sect. 19.3). The enormous growth in com-
puting power has rendered feasible camera-based methods for automatically quan-
tifying the individual and social behaviours of creatures as sophisticated as flies.10

Such methods rely on machine-vision algorithms capable of accurately tracking
many individual flies, and classification algorithms for the diverse behaviours dis-
played by the flies.

Even bacterial behaviour can be represented at a higher level thanmere respiration:
rate of growth and tumbling motions are characteristic. Any system for monitoring
bacteria, however, needs to be able to contend with the short generation time, during
which individualsmay lose their identity and become two new entities. One approach
to dealing with this problem is to use a system of interconnected compartments and
ensure that each compartment contains at most one bacterium, which can then be
observed unencumbered by congeners.11

19.5 Modelling Life

Motivations for numerically modelling living cells and organisms include the possi-
bilities of investigating the effects of environmental factors much more rapidly and
comprehensively than via actual in vivo experimentation, and precisely testing ideas
about underlying mechanisms of biological activity. The conventional approach has
been to construct a set of differential equations corresponding to all the known reac-
tions inside a cell and in the intercellular medium and solve it numerically. It meets
almost insuperable obstacles, however: not only is the system of equations, corre-
sponding to thousands of reactions, very complicated, but many of the parameters
(rate coefficients and reagent concentrations) are not reliably known.

A very different alternative approach is to emulate, rather than simulate, an organ-
ism. To this end, the cell-based virtual living organism (VLO) has been created.12

This is a modular approach in which the exchange of information between modules
plays a key rôle. Granularity plays a key role: the emulation needs to be fast enough
to be useful when run on a computer but accurate enough to capture the essential fea-
tures of biology. Direct simulations typically aim to model every known biochemical
reaction but apart from the fact that many of the required rate coefficients and other
relevant parameters are unknown, such simulations would generate vast amounts of
superfluous information, obscuring the important concepts. The VLO is based on a
hierarchy of the concepts of life/living, organism, organ, tissue and cell. As in a real

10E.g., Branson et al. (2009).
11Wakamoto et al. (2005).
12Bándi and Ramsden (2010, 2011).
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organism, the cell plays a key rôle and all the work is done at the cellular level. In
the VLO, cells give out jobs to other cells of other types and wait for the job results
(which may be chemicals) when they are needed.

Models of biological systems in general, and the VLO in particular, may be useful
for predicting the response of an organism to certain drugs, or the probability of
creating a tumour given certain environmental conditions, and so forth. It is perhaps
best viewed as a rapid prototyping tool, analogous to their very useful and already
widely used counterparts in mechanical engineering.
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20Medical Applications

The question that this chapter tries to answer is, “what use is bioinformatics for
medicine?” Medicine is concerned with prevention and cure of ill health and main-
tenance of good health. The connexion between DNA and illness once seemed clear.
Well-characterized diseases such as sickle cell anaemia, known to be caused by a
single point mutation in the gene coding for haemoglobin, seemed to provide solid
confirmation of the “one gene, one enzyme” hypothesis.

Much of the business of bioinformatics concerns the correlation of phenotypewith
genotype, with the transcriptome and proteome acting as intermediaries.1 Bioinfor-
matics gives an unprecedented ability to scrutinize the intermediate levels and estab-
lish correlations far more extensively and in far more detail than was ever possible.
This ability is revolutionizing medicine. In this spirit, one may represent the human
being as a gigantic table of correlations, comprising successive columns of genes
and genetic variation, protein levels, and physiological states and interactions.2

Medicine is mainly concerned with investigating physiological disorders, and the
techniques of bioinformatics allows one to establish correlations between those dis-
orders and variations in the genome and proteome of a patient. Medical applications
of bioinformatics are mainly concerned with the investigation of deleterious genetic
variation and with abnormal protein expression patterns. One can also include drug
discovery as a medical application.

1Indeed, one could view the organism as a gigantic hidden Markov model (Sect. 13.5.2), in which
the gene controls switching between physiological states via protein expression. Unlike the simpler
models considered earlier, here the outputs could intervene in hidden layers.
2Since the physiological column includes entries for neurophysiological states, it might be tempt-
ing to continue the table by adding a column for the conscious experiences corresponding to the
physiological and other entries. One must be careful to note, however, that conscious experience is
in a different category from the entries in the columns that precede it. Hence, correlation cannot be
taken to imply identity (in the same way, a quadratic equation with two roots derived by a piece of
electronic hardware is embodied in the hardware, but it makes no sense to say that the hardware
has two roots, despite the fact that those roots have well-defined correlates in the electronic states
of the circuit components).
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20.1 The Genetic Basis of Disease

Some diseases have a clear genetic signature; for example normal individuals have
about 30 repeats of the nucleotide triplet CGG, whereas patients suffering from
fragile X syndrome have hundreds or thousands.

More andmore data on the genotype of individuals are being gathered.Millions of
single-nucleotide polymorphisms (SNPs) are nowdocumented, and studies involving
the genotyping of hundreds of SNPs in thousands of people are now feasible.3 As
pointed out earlier, most of the genetic variability across human populations can be
accounted for by SNPs, and most of the SNP variation can be grouped into a small
number of haplotypes.4 This growing database is extremely useful for elucidating the
genetic basis of disease, or susceptibility to disease, and hence preventive treatment
for those screened routinely.

Thewish to develop preventive screening implies a need for amuchmore rapid and
inexpensiveway of screening formutations than is possiblewith genome sequencing.
The classic method is to digest the gene with restriction enzymes and analyse the
fragments separated chromatographically using Southern blotting (see footnote 1 in
Chap.14). Although direct genotyping with allele-specific hybridization is possible
in simple genomes (e.g., yeast), the complexity of the human genome renders this
approach less reliable. Microarrays are extensively applied to this task, as well as a
related approach in which the oligonucleotides are attached to small microspheres
(beads) a few micrometres in diameter. In effect, each bead corresponds to one spot
on a microarray. The beads are individually tagged (e.g., using a combination of a
small number of different attached fluorophores, or via the ratio of two fluorophores).
Several hundred different types of beads can bemixed anddiscriminated at the current
level of the technology. Amajor difficulty in the use of binding assays (hybridization)
based ongene chips or beads for allele detection is the lack of complete discrimination
between completely matched and slightly mismatched sequences. An alternative
approach is based on the very high sequence specificity of certain enzyme reactions,
such as restriction.

As well as trying to identify genes, or gene variants, responsible for disease by
analysing the genome of patients, gene segments can be cloned into cells and exam-
ined for disease-like symptoms (including the pattern of expression of certain pro-
teins). This approach is called functional cloning.

Much effort goes into understanding the correlation between gene association
and disease. The rather limited success of attempts to correlate groups of SNPs with
particular diseases suggests that there are many diseases enabled by combinations of
two or more variant genes. The problem of correlation then acquires a combinatorial
aspect and it becomes much more difficult to solve.

3These data can also be used to infer population structures (Jakobsson et al. 2008).
4These investigations are closely related to those of linkage disequilibrium (nonrandom association
between alleles at different loci).

http://dx.doi.org/10.1007/978-1-4471-6702-0_14
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Many diseases have no clear genetic signature, or they depend in a complex way
on genetic sequence. In cancer, for example, any relationship between gene and
disease must be highly complex and has so far eluded discovery. Mutations may
be important, but the changes in protein levels are equally striking. Both gene and
protein chips are important here.5

It may well be that the impact of genetic knowledge acquired through bioinfor-
matics will have an earlier impact on microbial infections than on intrinsic genetic
disorders. It is a straightforward application of bioinformatics to design minimal
microchips for the unambiguous diagnosis of a microbial infection from traces of
DNA found in the blood of the patient.6 Furthermore, the relative tractability of
prokaryotic genomes will hopefully lead to an increased understanding of the nature
of symbiosis, Given the ubiquity of microorganisms everywhere in our environment,
symbiosismightwell be considered a rather general phenomenon. The challenge is to
understand multimicrobial ecosystems and how benign coexistence can sometimes
suddenly become life-threatening to host metazoans.

Forensic medicine is an important branch of the medical application of genetic
analysis. Repeated motifs such as variable number of tandem repeats (VNTRs) or
short tandem repeats (STRs) appear to be uniquely different for each individual and,
hence, can be used for identification purposes. Degradation of the DNA samples,
which may have been exposed to adverse environmental influence before collection,
limits the use of the longer VNTRs. The smaller STRs require PCR amplification in
order to ensure that enough material is available for detection after chromatographic
separation. Similar techniques are used to identifymicroorganisms used in biological
warfare and their origin.

20.2 Cancer

Cancer, nowadays the leading cause of mortality in many developed countries, is
defined as a disease involving a malignant tumour. A tumour is an abnormal lump
of tissue that apparently serves no physiological purpose; it is considered to be
malignant if it invades surrounding (normal) tissues or spreads to other parts of the
body (a process called metastasis).

Phenotypically, cancerous cells (i.e., those constituting a tumour) are character-
ized by rapid and undifferentiated proliferation. Practically, the only “differentiation”
that arises in amalignant tumour is angiogenesis, when the tumour is itself invaded by

5An example of the lack of a simple genetic cause of disease is illustrated by the fact that the
same mutations affecting the calcium channel protein in nerve cells are observed in patients whose
symptoms range from sporadic headaches to partial paralysis lasting several weeks. This is further
evidence in favour of Wright’s “many gene, many enzyme” hypothesis as opposed to Beadle and
Tatum’s “one gene, one enzyme” idea. Cf. polygenic disease (Sect. 19.1) and pleiotropy.
6Chumakov et al. (2005).

http://dx.doi.org/10.1007/978-1-4471-6702-0_19
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blood vessels, which are very necessary to ensure its continued survival and growth.
Genotypically, the most characteristic feature of cancer is aneuploidy—abnormal
numbers of chromosomes. Given that one of the most important factors determining
reproductive isolation and, hence, speciation is chromosome mismatch, malignant
tumours (cancers) may be considered to be foreign species within the host (i.e.,
having the status of parasites).

About 100 years ago, von Hanseman, and later Boveri, promulgated the view that
aneuploidy, itself triggered by unknown causes, was the cause of cancer. Later, the
idea that a few point mutations in certain genes were sufficient to upset the regulation
of the cell and cause cancer received intensive scrutiny, with the genetic correlates
assigned to certain stages in its progression (Table20.1). Nevertheless, the “gene
mutation theory” has a number of weaknesses, notably:7

1. Many chemical carcinogens are not mutagens.
2. Presumed oncomutations cannot be detected in about 50% of cancers; conversely

cells carrying presumed oncomutations are often not cancerous.
3. Presumed oncomutations are heritable, but cancers are not.
4. The probability of being afflicted by cancer increases exponentially with age.

infants are essentially free of cancer, and the accumulation of the purportedly
required mutations during the lifetime of a human being implies unrealistically
high rates of mutation.

5. Exposure to some carcinogens results in cancer only after a very long (decades)
period of latency (so-called neoplastic latency).

Cell division (mitosis), especially in eukaryotes, is an intricate affair. According
to the “chromosomal theory” of cancer, carcinogens are aneuploidogens that upset
the delicate and complex molecular machinery of mitosis,8 resulting in cell division
with the chromosomes unequally distributed between the two daughter cells. This
results in massive genotypic aberration, equivalent to thousands of point mutations
occurring in a very short time. Although many such cells are simply not viable,

Table 20.1 Stages of a cancer and some genetic correlates

Stage Macrodescription Microdescription

A Dedifferentiated tissue (atavism) Inherited mutations

B Benign epithelial cancer Acquired mutations: increased exposure
to carcinogens from the environment

C Adenocarcinoma p53 gene involved

D Metastasis Many mutations

7See Duesberg et al. (2005).
8For example, they could bind to some of the proteins, changing their affinities to the others.
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presumably a few survive—indeed one may be sufficient—and form the beginning
of a cancer. The abnormal karyotype appears to confer extraordinary genotypic and
phenotypic instability, such that the cancer continues to evolve, developing more
and more abnormal aneuploidy. Given that aneuploidy implies extra copies of some
chromosomes and damage to or deletion of others, the resulting cell is likely to
show phenotypically deviant behaviour, including the ability to hyperproliferate and
rapidly evolve drug resistance.

20.3 Toward Automated Diagnosis

Knowledge of protein expression patterns greatly expands the knowledge of disease
at themolecular level. The full power of the pattern recognition techniques discussed
earlier (Sect. 8.2) can be brought to bear in order to elucidate the hidden mechanisms
of physiological disorder. The technology of large-scale gene expression allows one
to correlate gene expression patterns with disease symptoms. Microarray technol-
ogy has the potential for enabling swift and comprehensive monitoring of the gene
expression profile of a patient. Where correlations become well established through
the accumulation of vast amounts of data, the expression profile becomes useful for
diagnosis, and even for preventive treatment of a condition enhancing susceptibility
to infection or allergy. One does not simply seek to correlate the bald list of expressed
proteins and their abundances with disease symptoms, however: The subtleties of
network structure and gene circuit topology are likely to prove more revealing as
possible “causes”.

The differential expression of genes in healthy and diseased tissue is usually
highly revealing. For the purposes of diagnosis, each gene is characterized as a
point in two-dimensional space, the two coordinates corresponding to the relative
abundance of the gene product in the healthy and diseased tissue. This allows a rapid
visual appraisal of expression differences.

The composition of blood is also a highly revealing diagnostic source (cf.
Sect. 18.1). As well as intact peptides and other biomacromolecules, fragments of
larger molecules may also be present. For their identification, mass spectrometry
seems to be more immediately applicable than microarrays.

Gene chips also allow the clear and unambigous identification of foreignDNA in a
patient due to an invadingmicroorganism, obviating the laboriouswork of attempting
to grow the organism in culture and then identify it phenotypically.

In the future, implantable sensors are expected to be able to offer continuous
monitoring of a large number of relevant physiological parameters and biomarkers
(cf. Fig. 16.1). Instead of people having a biannual or even just annual blood test,
hourly fluctuations could then be monitored, leading to an explosion of actimetry
(activimetry) as a way of characterizing physiological state.

http://dx.doi.org/10.1007/978-1-4471-6702-0_8
http://dx.doi.org/10.1007/978-1-4471-6702-0_18
http://dx.doi.org/10.1007/978-1-4471-6702-0_16
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20.4 Drug Discovery andTesting

Whereas traditionally drugs were sought that bound to enzymes, blocking their
activity, bioinformatics-driven drug discovery focuses on control points.

Intervention using drugs can take place very effectively at control points, as sum-
marized in Table20.2. The results of expression experiments are thus carefully scru-
tinized in order to identify possible control points. Once a gene or set of genes
have been found to be associated with a disease, they can be cloned into cells and
the encoded protein or proteins can be investigated in more detail as drug targets
(functional cloning).

The proteome varies between tissues, and many different structural forms of a
protein can be made by a given gene depending on cellular context and the impact of
the environment on that cell. From the viewpoint of drug discovery, there are further
crucial levels of detail that need to be considered, namely the way that proteins subdi-
vide structurally into discrete domains and how these domains contain small cavities
(active sites) that are considered to be the “true” targets for small-molecule drugs.

Clustering as well as other pattern recognition techniques (Sect. 18.3) can be used
to identify control points in regulatory networks from proteomics and metabolomics
data. DNA, RNA, and proteins are thus the significant biological entities with respect
to drug development. The stages of drug development are summarized in Table20.3.
Great effort is being put into short-cutting this lengthy (and very expensive) process.
For example, structural genomics can be used to predict (from the corresponding gene
sequence) the three-dimensional structure of a protein suspected to be positioned at a
control point. It may also be possible to compare active sites or “specificity pockets”
(these regions are typically highly conserved). Toxicogenomics refers to the use of
microarrays to evaluate the (adverse) effects of drugs (and toxic substances generally)
across a wide range of genes, and pharmacogenomics refers to the genotyping of
patients in an attempt to correlate genotype and response to a drug.

Proteins in cells do not exist in isolation. They bind to other proteins to form mul-
tiprotein structures that inter alia are the elements of pathways that control functions
such as the responses to hormones, allergens, growth signals, and so on—things
that go wrong in disease. Knowledge of the network of interactions (Sect. 16.1) is
needed to understand which proteins are the best drug targets. One hopes to develop
a physical map of the cell that will allow interpretation of masses of data through

Table 20.2 Stages of gene expression and their control

Stage Description Control (examples)

G Genome → transcriptome (transcription) Epigenetic regulation (networks)

T Transcriptome → proteome (translation) Post-translational modification

P Proteome → dynamic system Distributed control networks

D Dynamic system → phenotype Hormones

M Metabolism Allostery

http://dx.doi.org/10.1007/978-1-4471-6702-0_18
http://dx.doi.org/10.1007/978-1-4471-6702-0_16
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Table 20.3 Stages of drug discovery and development

Stage Desired outcome Technologies involved

1. Target selection A gene (Functional) genomics;
genotyping

2. Protein expression A three-dimensional protein
structure

Protein chemistry

3. Screening A drug which binds Binding studies

4. ADME A usable drug Interaction studies

5. Trials An efficacious drug Clinical trials

mining techniques and will help train predictive methods for calculating pathways
and how they mesh together. Then, by homing in on the atomic details of active sites,
the best candidate drug targets—probably a very small proportion of biologically
valid targets—can be identified and subjected to closer scrutiny.

20.5 Nanodrugs

Nanotechnology is recognized to have sufficient potential impact on medicine
for a special word, “nanomedicine”, to have emerged, meaning the applications of
nanotechnology to medicine. Given that medicine includes “the art of restoring and
preserving health by means of remedial substances and the regulation of diet, habits,
etc.”, the scope of nanotechnology to intervene in medicine is large indeed. Here,
however, we shall confine ourselves to describing an ingenious example of thera-
peutic nanoparticles (i.e., a nanodrug) involving the transmission of information.9

The drug is actually a mixture of two different kinds of nanoparticles,“signalling”
and “receiving”. The rôle of the signalling particles is to target tumours. They are
constructed from gold nanoparticles coated with ligands for angiogenic receptors,
tumours being known to be very angiogenically active. After systemic administration
these particleswill tend to concentrate at the tumour due to their affinity for the angio-
genic receptors. The tissue is then irradiatedwith an oscillating electromagnetic field,
whereupon the localized nanoparticles heat up and trigger the coagulation cascade,
as well as inflicting thermal damage on the tumour. The cascade essentially ampli-
fies the information about the tumour; this information can be received by receiving
particles that were also systemically introduced; these particles are equipped with
coagulation-targeting peptides, but also loaded with a chemotherapeutic substance.
The combination of particles enabled the chemotherapeutic dose to be increased
between one and two orders of magnitude compared with a delivery system lacking
the amplification–communication capability.

9von Maltzahn et al. (2012).
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Problem. Carefully and critically scrutinize the von Maltzahn et al. (2012) system
and subject it to a proper information-theoretic analysis.

20.6 PersonalizedMedicine

Given the prevalence of serious adverse drug reactions, there is much interest in
identifying genetic risk factors for them, which would enable their elimination, pro-
vided that appropriate genetic screening had been carried out on the patient. A fur-
ther step in that direction would be taken by organizing clinical trials of proposed
new drugs such that patients are grouped according to their genetic profile. Beyond
that, the development of drugs tailored to haplotype seems feasible at first sight,10

especially with the introduction of microfluidics-based microreactors into the phar-
maceutical industry, which should make reliable small-scale syntheses economically
feasible.

Undertaking gene therapy evidently requires knowledge of the genome. The pos-
sibilities of direct intervention at the level of the gene have been greatly expanded
by the discovery of small interfering RNA. Nevertheless, despite intensive efforts,
there has been no real success in the field to date. A major problem is the difficulty
of introducing the required nucleic acid material into cells from an external source.

Genome-wide association studies (GWAS) aim to scan entire (personal) genomes
in order to identify genes associated with certain diseases (phenotype), especially
polygenic ones (Sect. 19.1). GWAS appears to have first been proposed by Risch
and Merikangas (1996). They observed that few of the numerous reports of genes or
loci that might underlie complex diseases have stood up to scrutiny. They analysed
linkage analysis and compared it with association analysis, using an unexceptionable
model: The disease susceptibility locus has two alleles, A and a, and the genotypic
relative risks (the increased chance that an individual succumbs to the disease) for
genotypes aa, aA andAA are assumed to be 1, γ and γ2, respectively. The association
assumption states that the more often affected siblings share the same allele at a
particular site, the more likely the site is close to the disease gene. The expected
proportion of alleles shared by a pair of affected siblings is11

Y = (1 + w)/(2 + w) (20.1)

where
w = pq(γ − 1)2/(pγ + q)2 (20.2)

where p and q = 1 − p are the population frequencies of A and a, respectively.
If there is no linkage, Y = 0.5. For p = 0.1 and γ = 4.0, Y = almost 0.6 and
slightly less than 200 families would be required to make a reasonable inference
of linkage. On the other hand, for the probably more realistic values of p = 0.01
and γ = 2.0, Y = 0.502 and almost 300000 families would be required, which is

10These developments are generally referred to as pharmacogenomics.
11See Risch and Merikangas for more about the assumptions behind these formulae.

http://dx.doi.org/10.1007/978-1-4471-6702-0_19
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practically unachievable. Risch and Merikangas argue that association rather than
linkage tests enable an inference to be drawn from far fewer families.

Impetus in this direction came from the international HapMap project, which
was based on the sequencing technology developed for the human genome project
and which aimed to produce a genome-wide map of SNPs (Sect. 10.4.3). As Ter-
williger and Hiekkalinna (2006) have written: “The international HapMap project
was proposed in order to quantify linkage disequilibrium (LD) relationships among
human DNA polymorphisms in an assortment of populations, in order to facilitate
the process of selecting a minimal set of markers that can capture most of the signal
from the untyped markers in a genome-wide association study. The central dogma
can be summarized by the argument that if a marker is in tight LD with a poly-
morphism that directly impacts disease risk ... then one would be able to detect an
association between the marker and the disease with sample size that was increased
by a [certain] factor ... over that needed to detect the effect of functional variant
directly”. These authors go on to decisively refute the central dogma (of GWAS).
A few years earlier, Pritchard and Cox (2002) had already written that “LD-based
methods work best when there is a single susceptibility allele at any given disease
locus, and generally perform very poorly if there is substantial allelic heterogeneity”.
Despite this, Manolio et al. (2008) were euphoric about the international HapMap
project’s “success”, although given their affiliation with a major funding agency for
the project their viewpoint may lack objectivity (the project was certainly success-
ful at spending large sums of public money). More pertinent are remarks such as
“genetic variation in chromosome ... did not improve on the discrimination or classi-
fication of predicted risk” (Paynter et al. 2009) or “treatment based on genetic testing
offers no benefit compared to ... without testing” (Eckman et al.). In his paper “Con-
siderations for genomewide association studies in Parkinson disease” (PD), Myers
(2006) remarks that “Taken together, these four studies appear to provide substantial
evidence that none of the SNPs originally featured as potential PD loci are convinc-
ingly replicated and that all may be false positives”. It would appear that there is
a great deal of evidence against the “common variants/common disease” (CV/CD)
hypothesis—yet that does not prevent larger and larger studies (currently more than
one million markers) being attempted. Weiss and Terwilliger were already sceptical
in the year 2000 and their scepticism has been amply vindicated.

20.7 Bacterial Multiresistance

It is becoming increasingly widely perceived that one of the greatest threats to human
health is the increasing ability of microbes, especially bacteria, to resist antibiotics.
This resistance is a rather obvious consequence of the inept use of antibiotics,12 but
there has been little success in effectively overcoming it. One difficulty is the rapidity

12Kepler and Perelson (1998); Hermsen et al. (2012).

http://dx.doi.org/10.1007/978-1-4471-6702-0_10
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of the change in resistance. Analysis has shown that it occurs by the addition and
rearrangement of resistance determinants and genetic mobility systems, rather than
by gradual modification of the genome (Sect. 10.4.2).13

20.8 Toxicogenomics

It was known to Pythagoras that the broad bean, Vicia faba, It is poisonous to some
people,14 a condition known as favism and now understood to be due to genetically
transmitted glucose-6-phosphate dehydrogenase (G6PD) deficiency. Such phenom-
ena are properly the subject matter of toxicogenomics—the consequences of a par-
ticular genetic constitution for the metabolic toxicity of foods and drugs. As Tennant
(2002) has pointed out, “toxicology will progressively develop from predominantly
individual chemical studies into a knowledge-based science in which experimental
data are compiled and computational and informatics tools will play a significant
role in deriving a new understanding of toxicant-related disease”. Of equal impor-
tance is the application of mRNA and protein expression technologies—that is, tran-
scriptomics and proteomics—to study the effects of toxic substances on physiology,
including metabolism, which should enable the mechanisms of toxic action to be far
more effectively determined. A rarer use of the term is “the study of the response of
the genome to toxic agent exposure”.15

There are sufficient examples demonstrating that genes are not the sole determi-
nant of the toxicities of substances; environmental factors also play a role,16

Problem. Evaluate the relevance of epigenetics to toxicogenomics.

20.9 Reprogramming Stem Cells

This phrase is often used to describe the remarkable discovery that by adding just four
new genes to differentiated (skin) cells, after 2–3 weeks they reverted to pluripotent
stem cells (induced pluripotent stem cells, iPS).17 “Reprogramming” does not imply
that cells operate like digital computers, but the discovery is of great importance,
because it allows perhaps any cell to be converted into the equivalent of an embryonic
stem cell, which is much more troublesome to obtain directly (from an embryo).

13Shapiro (1992).
14Meletis (2012).
15Marchant (2002).
16E.g., Povey (2010); see also Sect. 19.2.
17Takahashi and Yamanaka (2006).
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Progress in the technical capabilities of plant biotechnology has resulted in the
development of many transgenic plants, including many comestible ones. The moti-
vation for introducing new genes has two primary aims: to confer resistance to pests,
leading to the diminished use of chemical pesticides; and to confer resistance to her-
bicides, allowing their expanded and indiscriminate use to eliminate weeds. Other
aims are to enhance resistance to adverse environmental conditions and to incorporate
specific nutrients (e.g., vitamins) into plants that would not otherwise be considered
a source for them in the human diet. In all the above cases the plants are destined for
human consumption, which has given rise to some concerns about their safety. (Other
uses, such as the industrial production of drugs, are not controversial.) There is not
space here to delve into the controversies regarding the comestibility of genetically
modified organisms (GMO); whatever the merits of the arguments on both sides,
there is widespread legislative regulation of the production and distribution of GMO
and, hence, a requirement for efficient and reliable methods of detecting them.

Since, by definition, GMO contain uniquely characteristic DNA sequences, their
analysis is the most reliable and specific method for identifying GMO and this
is, indeed, the most widespread method in use. Typically the genetic material is
initially screened qualitatively, following which any samples positively identified as
originating from GMO are subjected to quantitative analysis.18
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Ecology is undoubtedly part of biology, and information science is increasingly
relevant to ecology. An especially modish activity is the analysis of time series of
salient environmental parameters (“leading indicators”) in order to give advance
warning of imminent catastrophe.1 Nevertheless, it is recognized that régime shifts
in ecological systems can occur with no warning,2 as in the Bak-Sneppen model
of an evolving ecosystem (Sect. 10.9.2), and much rather laborious work has been
undertaken to demonstrate this point. Traditionally, this topic is a branch of general
systems theory (Sect. 7.1). An important rôle was played by Lotka and Volterra in
the early years of the 20th century (the Lotka–Volterra model).3 This work, in fact,
long predates the emergence of general systems theory as a distinct branch of study
(and may indeed have been its inspiration).

The search for “leading indicators” has by no means been abandoned. Indeed,
“the potential to identify early warning signals that would allow researchers and
managers to predict [e.g., the collapse of ecological communities] before they happen
has therefore been an invaluable discovery” (See footnote 1). Nevertheless, the aims
of this search are far from clear. If the collapse were due to external (i.e., exogenous)
forcing, than indeed ecosystem “managers” might be able to do something about it
(assuming that the collapse was unwanted). But if it is endogenous, then it is far from
clear to what extent it could be managed.

In any case, the laborious bioinfotheoretic analysis of time series of leading indi-
cators is scarcely necessary to give advance warning of ecosystem collapse. In most
cases it is sufficiently apparent. Already Spengler (1931) could remark, “DieMecha-
nisierung derWelt ist in ein Stadium gefährlichsten Ueberspannung eingetreten. Das
Bild der Erde mit ihren Pflanzen, Tieren und Menschen hat sich verändert. In weni-
gen Jahrzehnten sind die meisten grossen Wälder verschwunden, in Zeitungspapier
verwandelt worden und damit Veränderungen des Klimas eingetreten, welche die
Landwirtschaft ganzer Bevölkerungen bedrohen; unzählige Tierarten sind wie der

1Boettiger et al. (2013).
2Hastings and Wysham (2010).
3See the monumental review by Goel et al. (1971).
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Büffel ganz oder fast ganz ausgerottet...”. Thirty years later the artist C.F. Tunni-
cliffe could write, regarding the variety of wildlife in Asia, “All this [geographical]
variety maintains a corresponding variety of wildlife, except in those places where
humans are dominant. Thus, in India, the lion and the rhinoceros are reduced to a
remnant, the Mongolian wild horse will soon be extinct, if it is not already so, and
the dugong has been hunted to a shadow of its former numbers. Soon, unless man
becomes suddenly more intelligent, we shall have to face fact that where he lives and
works, animal life will continue to suffer, and where he is in complete control the
animals must disappear completely”.4 It was not necessary to analyse time series of
leading indicators to reach these conclusions.

In some cases ecosystem collapse has been managed as the result of a deliberate
trade-off.An example is the fate of theAral Sea, before 1960 theworld’s fourth largest
inland water body, which has almost completely disappeared. It has been called the
greatest man-made ecological catastrophe the world has known. To recall: the water
of the Aral Sea is mainly provided by the Amu Darya (the Oxus of antiquity) and
Syr Darya Rivers, and is lost by evaporation (about 60km3 per annum). The sea was
the focus of a thriving fishing industry (about 40kt per annum). These large rivers
and their tributaries were already being used to a certain extent for irrigation; some
canals hadbeen constructed in the 18th century, andby1960 about 4.5million hawere
being cultivated using irrigation, requiring about 60km3 of water per annum. At that
epoch the decision was made (essentially by the central Soviet planning authorities)
to vastly expand agriculture in the region. The irrigated area, and the amount of water
drawn off, were roughly doubled—by 1980, in effect, the entire volume of the two
big rivers was being diverted to irrigation, via a network of about 30,000km of canals
and over a hundred dams and reservoirs. Meanwhile the population also doubled,
from about 14 to about 27million during that interval. The consequences for the Aral
Sea and the river deltas were already foreseen by the Moscow Hydroproject Institute
in the 1960s; instead of fish (commercial fishing ceased in the early 1980s) we have
the production of enormous tonnages of cotton and wheat; that was, essentially, the
trade-off.5

4Even more stark is: “If one looks around, the world appears like an anthill where its inhabitants
have lost all sense of direction. They run aimlessly about, chop each other to pieces, foul their nest,
attack their young, spend tremendous energies in building artifices that are either abandoned when
completed, or when maintained, cause more disruption than was visible before, and so on” (von
Foerster 1972).
5Although one might accept the trade-off, one might criticize its implementation: much of the
water taken for irrigation is lost through seepage (e.g., because of unlined canals). Excessive use
of fertilizers and pesticides has led to pollution of potable water, and the now dry, salty bed of
the sea is a source of aerial dust (∼60 Mt/year) transported away by the wind, and the cause of
widespread respiratory problems. These deleterious consequences of the transfer of water from sea
to fields might have been foreseen and mitigated accordingly. A project to divert water from the
great Siberian rivers to the Aral Sea was under investigation but was abandoned with the end of the
Soviet Union—another kind of collapse.
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Itmay be thatmodelling—albeitmore sophisticated than the Lotka–Volterra equa-
tions or the Forrester–Meadows approach—informed by time series of salient data
can at least present the alternatives of possible actions and prevent the inadvertent
falling into disaster. Proper account of the evolving nature of the system being mod-
elled needs to be taken.6 That is, perhaps, the best that can be achieved; most or all
ecosystems are likely examples of a Class IV cellular automaton, the evolution of
which can only be explored by explicit simulation and shortcuts to the future are in
principle impossible.

References

Allen PM (1998) Evolving complexity in social science. In: Altman G, Koch WA (eds) Systems—
new paradigms for the human sciences. Walter de Gruyter, Berlin

Allen PM, Strathern M (2008) Complexity, stability and crises. In: Ramsden JJ, Kervalishvili PJ
(eds) Complexity and security. IOS Press, Amsterdam, pp 71–92

Boettiger C, Ross N, Hastings A (2013) Early warning signals: the charted and uncharted territories.
Theor Ecol 6:255–264

von Foerster H (1972) Perception of the future and the future of perception. Instruct Sci 1:31–43
Goel NS,Maitra SC,Montroll EW (1971) On the Volterra and other nonlinear models of interacting
populations. Rev Mod Phys 43:231–276

Hastings A, Wysham DB (2010) Regime shifts in ecological systems can occur with no warning.
Ecol Lett 13:464–472

Spengler O (1931) Der Mensch und die Technik. C.H. Beck, Munich

6Allen (1998), Allen and Strathern (2008).



22TheOrganizationof Knowledge

Much of biology has traditionally been concerned with the classification of objects,
especially of course organisms, the best known example probably being Carl Lin-
naeus’ Systema Naturae, first published in 1735. As knowledge has continued to
expand, the desire to classify has also spread to bioinformatics and its objects: genes
and other DNA sequences, proteins, and other molecules. As the numbers of objects
stored in databases has grown, some kind of systematization has been seen as essen-
tial to aid database searches. Unfortunately, most classification almost inevitably
results in distortion, and more rigid classification, the more severe the distortion.
Linnaeus himself considered that his classification was to some extent artificial.
The only admissible classifying arrangement of collections of objects should be
that which respects the principle of maximum entropy: that arrangement should be
selected, which imposes fewest assumptions upon the data.1 Here, these issues can
only be very briefly discussed; themain purpose is to alert the reader to the dangers of
classification and encourage a cautious approach to their adoption. As Sommerhoff
(1950) has pointed out, “Biologists have been too keen to explain things before they
were able to state in exact terms what they wanted to explain”, and aptly mentions
Quine’s remark, “that the less a science is advanced, the more does its terminology
tend to rest on the uncritical assumption ofmutual understanding”. Ontologies (in the
specific sense of footnote 3) are an obvious attempt to achieve mutual understanding,
but at the price of an overly rigid structure that, given the very incomplete state of
our knowledge in the field, will surely tend to hinder its further development. Just as
the formation of bone requires both osteoblasts and osteoclasts, so does the growth
of solid understanding require a certain conceptual fluidity, before the evidence in
favour of a proposition becomes overwhelming.

1Aparticularly glaring example of disrespect toward this principle is to be found in the current fashion
among museum curators to ceaselessly rearrange their collections in order to demonstrate some
preconceived idea or another, whereas, ideally, the exhibits should be displayed in an unstructured
manner, in order to allow the thoughtful visitor to draw his or her own conclusions from the raw
evidence. Only in that way can new knowledge (conditional information) be generated through the
perception of new, hitherto unperceived, relationships.

© Springer-Verlag London 2015
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Formally, classifying structures can be partitions or hierarchies. A structure s is
a partition if and only if ∀c, c′ ∈ s, c ∩ c′ = ∅, and it is a hierarchy if and only if
∀i ∈ I, {i} ∈ s; ∀c, c′ ∈ s, c ∩ c′ ∈ {∅, c, c′}.
Problem. Draw Venn diagrams illustrating the partition

{{a}, {b, c}, {d, e, f, g}},
and the hierarchy

{{a, b, c, d, e, f, g}, {d, e, f, g}, {b, c}, {e, f }, {a}, {b}, {c}, {d}, {e}, { f }, {g}}.
A classifying algorithm would start by constructing the classifying structure; it must
then have a method (discrimination algorithm) for associating each item to be clas-
sified with a class (this is usually a pattern recognition problem; cf. Sect. 8.2), which
is then applied to identify the items and place them in their classes.

22.1 Ontology

Ontology is defined as that branch of metaphysics concerned with the “nature of
being”. Attempts have been made to define it less metaphysically and more con-
cretely, such as the formalization, or specification, of conceptualizations about
objects in the world—including the constraints that define them individually and
the relationships between them. Such formalization is held to be essential for being
able to communicate with others. Hence, human languages came into being, but a
problem is that they evolve: A fundamental paradox is that the desire to commu-
nicate novel, complex ideas requires individual, local innovations, which increase
linguistic diversity but reduce communicability. Certain languages seem to be better
than others in this regard, insofar as novel constructs can be understood by people
even though they have never heard them before then.

The encapsulation of biological knowledge within database schemata almost
inevitably leads to impoverishment and distortion. A good example2 is the repre-
sentation of a protein structure obtained by X-ray crystallography as an array of
the three-dimensional coordinates of its constituent atoms. The raw diffraction data
are refined to yield a single structure, but nearly all proteins have multiple stable
structures, most of which will, however, be only slightly populated under a given
set of conditions, such as those used to crystallize the protein. The protein database
ignores these alternative structures.

Nevertheless, the sheer volume of data (sequences and structures) emerging from
experimental molecular biology is a powerful driver for treating it ontologically in
order to allow humans, and machines, to make some sense of it. Without an ontology
the mass of data would be unstructured and, hence, overwhelming to the human
mind, for it would be very difficult to discern meaningful paths through it.

2Pointed out by Frauenfelder (1984).

http://dx.doi.org/10.1007/978-1-4471-6702-0_8
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In bioinformatics, ontology typically has a more restricted definition, namely “a
workingmodel of entities and interactions”.3 Thesemodels would include a glossary
of terms as a basic part. Other components of a model are generally considered to
be the following (note that there has been little attempt by ontologists to define these
words carefully and unambiguously): classes or categories (sets of objects); attributes
or concepts, which may be either primitive (necessary conditions for membership of
a class) or defined (necessary and sufficient conditions for membership); arbitrary
rules (sometimes called axioms) constraining class membership, which might be
considered to be part of the glossary of terms; relations (between classes or con-
cepts), which might be either taxonomic (hierarchical) or associative; instantiations
(concrete examples; i.e., individual objects); and events that change attributes, or
relations, or both.

22.2 Knowledge Representation

Most obviously, knowledge representation is a medium of human expression,
typically a language. In bioinformatics, the representation should be chosen to assist
computation; for example, the attributes of an object being optimized using evolu-
tionary computation (Sect. 8.1) have to be encoded in the (artificial) chromosome; it
may be sufficient to represent their presence by “1” and their absence by “0”, in the
case of binary encoding.

Ideally, the representation should provide a guide to the organization of
information—indeed knowledge might be defined as “organized (structured) infor-
mation”. Thus, the ontologies discussed in the previous section are an attempt to
represent knowledge in this spirit. The most desirable kind of organization is that
which facilitates making inductive inferences—and this will be most successfully
achieved if as few preconceptions as possible are imposed on the organization.

Powerful ways of representing knowledge need not involve words, or symbolic
strings, at all. Visualization (cf. Sect. 8.5) may be much more revealing than a verbal
description. A particular advantage is the possibility of rearranging materials in two,
rather than in one, dimension. In this regard, languages based on ideographs, most
notably Chinese, would appear to be very powerful, since concepts can be rearranged
on a sheet of paper and novel juxtapositions can be freely generated.

As knowledge becomes more and more complex, good examples of which are
the organization of living organisms (Fig. 10.1) and their regulation (e.g., Fig. 12.1),
novel ways of representing it need to be creatively explored. One approach that may

3Each different model—such as RiboWeb, EcoCyc—is typically called an “ontology”; hence, we
have the Gene Ontology, the Transparent Access to Multiple Bioinformatics Information Sources
(TAMBIS) Ontology (Baker et al. 1999), and so forth. If ontology is given the restricted meaning
of the study of classes of objects, then an “ontology” like TAMBIS can be considered to be the
product of ontological inquiry.

http://dx.doi.org/10.1007/978-1-4471-6702-0_8
http://dx.doi.org/10.1007/978-1-4471-6702-0_8
http://dx.doi.org/10.1007/978-1-4471-6702-0_10
http://dx.doi.org/10.1007/978-1-4471-6702-0_12
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prove useful is to represent knowledge as probability distributions, conditional upon
more or less certain facts emanating from observations or laboratory experiments;
as more data becomes available, inferences can then be continuously updated in a
far more systematic manner than is currently carried out today.

22.3 The Problem of Bacterial Identification

Darwin’s notion of species was “a term arbitrarily given for the sake of convenience
to a set of individuals closely resembling each other” (cf. the slightly more formal
notion of quasispecies in sequence space: a cluster of genomes). Since bacteria pre-
dominantly proliferate asexually and can acquire new genetic material rather readily
(“lateral” or “horizontal” gene transfer), the criterion of reproductive isolation that
is rather helpful for defining species in metazoans is of little use. The first systematic
attempt to classify bacteria dates from1872,whenFerdinandCohnproposed a system
based on their morphology. The shape of individual bacteria can be easily seen in a
(high-power) optical microscope, and colonies growing on agar plates (for example)
often have characteristic morphologies themselves. Such a scheme can be readily
extended to include features such as pathogenicity and characteristic biochemistry,
and even characteristic habitat. The range of useful attributes depends essentially
on what measuring tools are available. Thus, for example, a classification based on
the compressibility of the bacterium placed between two parallel plates might also
be a useful one. Gram’s stain, which distinguishes between different characteristic
polysaccharides coating the bacterium, is well known. This is a dichotomous classi-
fication, and a hierarchy of dichotomies should lead unerringly to the identification
of a species (provided it is already known). All this knowledge has been captured
in the well-known Bergey’s Manual. Bacteria whose attributes did not match those
already known would be granted the status of a new species.

The advent of molecular biology provided further vastification of the range of
useful attributes. In particular, the nucleic acid sequence of the so-called 16S ribo-
somal RNA (rRNA), part of the smaller subunit of the ribosome, was used by Carl
Woese as a new way of classifying bacteria and, together with an assumption about
the rate of mutations, could be used to construct a comprehensive phylogeny of
bacteria. Bacteria seem to vary greatly in their genotypic (and phenotypic) stabil-
ity, however, and any classification based on the assumption of relative stability has
some limitations.4

4See Coenye and Vandamme (2004), and Hanage et al. (2006) for some recent discussion of the
matter; Trüper (1999) has written an interesting article on prokaryotic nomenclature.
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22.4 Text Mining

The literature of biology (the “bibliome”)—especially research papers published
in journals—has become so vast that even with the aid of a review articles that
summarize many results within a few pages it is impossible for an individual to
keep abreast of it, other than in some very specialized part. Text mining in the first
instancemerely seeks to automate the search process, by considering, above all, facts
uncovered by researchers. Keyword searches, which nowadays can be extended to
cover the entire text of a research paper or a book, are straightforward—an instance
of string matching (pattern recognition)—but typically the results of such searches
are nowadays themselves too vast to be humanly processed, and more sophisticated
algorithms are required. Automated summarizing is available, based on selecting
those sentences in which the most frequent information-containing words occur, but
this is generally successful only where the original text is rather simply constructed.
TheHolyGraal in the field is the automated inference of semantic information; hence,
progress depends on progress in automated natural language processing. Equations,
drawings and photographs pose immense problems at present. Some protagonists
even have the ambition to automatically reveal new knowledge in a text, in the
sense of ideas not held by the original writer. Examples of this would be hitherto
unperceived disease–gene associations.

It would certainly be of tremendous value if automatic text processing could
achieve something like this level. Research papers could be automatically com-
pared with one another, and contradictions highlighted. This would include not only
contradictory facts but also facts contradicting the predictions of hypotheses. High-
lighting the absence of appropriate controls, or inadequate evidence from a statistical
viewpoint, would also be of great value. In principle, all of this is presently done
by individual scientists reading and appraising research papers, even before they are
published (through the peer-review process, which ensures (in principle) that a paper
is read carefully at least once; papers not meeting acceptable standards should not
(again, in principle) be accepted for publication), but the volume of papers being
submitted for publication is now too large to make this method rigorously workable.
Another difficulty is the already immense and still growing breadth of knowledge
required to properly review many papers. One attempt to get over that problem was
to start new journals dealing with small subsets of fields, in the hope that if the
boundaries are sufficiently narrowly delimited, all relevant information can be taken
into account. However, this is a hopeless endeavour: Knowledge is expanding too
rapidly and unpredictably for it to be possible to regulate its dissemination in that
way.Hence, it is increasingly likely that relevant facts are overlooked (and sometimes
useful hypotheses too). Furthermore, the reviewing process is highly fragmented: It
is a kind ofwork that is difficult to divide among different individuals; and the general
trend for the number of scientists producing papers to increase exacerbates, rather
than alleviates, the challenge.All that can be hoped for perhaps is that themost impor-
tant results at least are properly incorporated into the edifice of reliable knowledge,
but this begs the question of how to define “importance”, which is often difficult to
perceive in advance of what is subsequently done with the results. Another difficulty
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is that researchers do not always want to publish their work in what might seem to be
the most appropriate journal regarding discipline: journals covering a broad range of
fields and carrying a large number of advertisements tend to be disproportionately
popular among scientists at present, often to the neglect of the journals published by
learned societies, even those of which the authors are members.

The waters of scientific publishing have been further muddied by the emergence,
and rapid growth, of open access journals. While many of these are available only
online and hencemuch cheaper to produce than conventional printed journals, never-
theless some costs are incurred, and these are financed by article processing charges,
which are fees charged to authors upon acceptance of a manuscript. This creates a
pernicious conflict of interest for the publishers.5 Whereas the number of subscrip-
tions to a conventionally financed journal will depend on the quality of its content,
the income of an open-access publisher is proportional to the number of papers they
accept and publish. The publishers are, therefore, directly motivated to publish as
many papers as possible and an easy way to achieve that is to abandon the traditions
and obligations of honest and rigorous peer review.

With all of these difficulties, it is not surprising that literature mining is presently
carried out in a very restricted fashion, such as merely searching for all mentions
of a particular gene (and perhaps their co-occurrence with mentions of a particular
disease). Whether the results of such mining are going to be useful is a moot point.
There appear to be no attempts currently to weight the value of the “ore” according
to some assessment of the reliability of any facts reported and assertions made. The
immense difficulties still to be tackledmust be weighed alongside the general growth
in overall understanding (in biology) that is hopefully taking place. The edifice of
reliable knowledge gradually being erected from the bricks supplied by individual
laboratories allows inferences to be made at an increasingly high level, and these
might well render largely superfluous endless automated reworking of the mass of
facts and purported facts in the primary research literature.

One area in which it seems likely that something interesting could emerge is the
search for clumpsor clusters of objects (whichmight bewords, phrases, or evenwhole
documents) for which there is no preexisting term to describe them. Such a search
might be based on a rather abstract measure of relevance (which must, of course, be
judiciously chosen), along the lines suggested by Good (1962), and adumbrated in
Sect. 8.3. This would be very much in the spirit of the clusters emerging when the
frequencies of n-grams in DNA are examined (cf. Sect. 13.7).

If, indeed, knowledge representation moves toward probability distributions
(Sect. 22.2), it would be of great value if text mining could deliver quantitative
appraisals of the uncertainties of reported experimental results, which would have to
include an assessment of the entire framework of the experiment (cf. Sect. 2.1.1)—
that is, the structural information, as well as of the metrical information gained
from the individual measurements. We seem to be rather far from achieving this

5Beall (2014).

http://dx.doi.org/10.1007/978-1-4471-6702-0_8
http://dx.doi.org/10.1007/978-1-4471-6702-0_13
http://dx.doi.org/10.1007/978-1-4471-6702-0_2
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automatically at present, but the goal merits the strongest efforts, for without such a
capability, we risk being condemned to ever more fragmented knowledge, which, as
a body, is increasingly shot through with internal contradictions.

22.5 The Automation of Research

Muchof the laboratorywork required for high-throughput genomics canbe automated
and carried out by laboratory robots according to a strictly executed set of instruc-
tions. In many ways this is better than carrying out the manipulations manually: the
robot is likely to be able to execute its instructionsmore uniformly and reliably than a
human experimenter. It also has advantage that a comprehensive record of the exper-
imental conditions, as well as of the results, can be compiled automatically; this, too,
may be superior to the traditional hand-written laboratory notebook, at least as far
as long series of almost identical experiments are concerned. This approach also has
the advantage, compared with microarray experiments (which are, of course, also
robotized as a rule), that conditions individually appropriate to each experiment can
be applied, avoiding the possibility of errors due to the uniform conditions applied
to an entire microarray not being appropriate for some of the reactions in some of
the places on the array.

A more ambitious development of automation is to automate the actual design of
experiments. Given the vast scale of experiments required to elucidate gene functions
and the like, this is a very necessary development. It has been realized as a robot
able to measure the growth curves (defining the phenotype of a relatively simple
microorganism like yeast) of selected microbial strains (distinguished by genotype)
growing in defined environments.6 The problem to which the robot has been applied
is the identification of the genes for enzymes catalysing reactions thought to occur
in the microbe. The robot was provided with extensive knowledge of metabolism,
and software to produce hypotheses about the genes and to deduce corresponding
experiments to test the hypotheses. These experiments were then executed by select-
ing strains from a collection given to the robot, measuring their growth curves on
rich medium and then inoculating them into minimal medium to which additional
metabolites, also selected by the robot, were added, after which growth curves were
again measured.

Such automation is well suited to answering questions of this nature, the frame-
work within which they are formulated being well circumscribed and carefully for-
mulated by the investigator who actually designed the robot: essentially it functions
as an extension of the brain and hands of investigator. As such, it is an extremely
valuable aid and the proliferation of this technology will considerably accelerate the

6King et al. (2009).
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accumulation of biological facts. The robot is certainly able to discover such facts but
the (inductive) invention of knowledge remains beyond its capabilities and, perhaps,
beyond the capabilities of any machine.
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